
Many people have posted asking for some fool to giv e an example of protected
mode programming, to allow everyone to laugh at the ir code.

Introduction
============
I wrote my first protected mode program many years ago to learn all of the
idiosyncracies of the Intel architecture. I still r ecommend this approach to
anyone, because there's nothing like learning from your mistakes! But in the
spirit of sharing knowledge, I offer my first progr am to all for
edification and amusement. I am not saying it is go od code, nor that it
couldn't be done better, but since I was more inter ested in getting it to
work than in doing it the best way, I believe this code is relatively
straightforward.

Requirements
============
I first had to work out what features I wanted to t ry - and being the fool I
was I thought I'd try everything! This included:
 - Accessing extended memory
 - Multiple tasks
 - Local descriptor tables
 - Multiple privilege levels
 - 16 and 32-bit code
 - Revectoring hardware interrupts
 - Direct hardware access (A20, PIC, timer, keyb oard, screen etc.)
 - Paging (although I dropped this for this prog ram)

So this program is designed to start up multiple ta sks, that each do the same
thing - bounce a ball in its own window. If I could get it fast enough, they
would seemingly all be able to bounce together.

High Level Design
=================
To make it easier on myself, I decided to effective ly hard code as much as
possible, letting the assembler do most of the work . This turned out to be
a good idea, since I could have a look at the actua l assembled constants
and make sure I was telling it what I thought I was ! My most invaluable tools
at this stage were the '386 Intel manual, and Borla nd's TD - not to debug, but
to have a look to the disassembled code. I even fou nd a bug in Borland's
disassembler!

So I wanted the program to do the following steps:
 - Set up core system tables in preparation of th e switch to protected mode
 - Switch to protected mode
 - Set up rest of system tables (esp. exception h andlers)
 - Set up each user task
 - Twiddle thumbs while tasks ran, until user pre ssed <Esc>
 - Return to real mode
 - Restore system to DOS state

This last turned out to be invaluable, since having to reboot the computer
every time to get out of my program wasted a lot of time (30 seconds reboot,
5 seconds running!). As it was, the system rebooted itself more than
enough times until I got the exception handlers rig ht!

Lessons I Learned
=================
To help any other novice protected-mode programmers out there, I can recommend
the following:
1) Spend the time to set up exception handlers. It is so easy to make a
 mistake that merely dumping all of the register contents onto the screen
 (in hex) is invaluable for not only finding whic h instruction caused the
 problem, but also in finding out what error the '386 is complaining about.
 If you don't do this step, the most likely scena rio is that any exception
 will result in another, which will result in a d ouble exception, which
 will result in another exception, which will shu t down the CPU, which will
 reboot the computer.
2) Examine the listing file the assembler can produ ce. Make sure the assembler

 and you both think you're talking about the same thing! Use a debugger
 (unfortunately DOS's DEBUG only accepts 8086 ins tructions) and type in
 the assembled hex bytes, and see if the debugger thinks it's the same
 instruction as you've typed. (Even this isn't pe rfect - the debugger may
 be assuming you're in 16-bit mode for a 32-bit i nstruction, producing
 wierd results! It also may have bugs itself!)

Idiosyncracies I Discovered
===========================
1) Protected mode far jumps can't be assembled. Bor land's TASM (anyway) can't
 be convinced to assemble JMP OFFSET ProtMode:OFF SET ProtProc. So I had to
 dummy these up with DBs and DWs.
2) The '386 does not save a task's LDT into its TSS on a task switch. So if
 LDT changes, you either have to update the TSS m anually, or prevent task
 switching.
3) The Trace bit in the TSS is not automatically sw itched off when the task
 is entered. This means that if tasks are still b eing switched behind the
 debugger, the T bit needs to be switched off man ually to prevent
 re-entering the debugger!

Tools I Used
============
I have assembled this program with three different version of Borland's TASM.
I don't own MASM, but I do not believe I have done anything Borland specific.
If anyone has any trouble, contact me and I will tr y to fix it.

The Code
========
I have had trouble attaching text to News articles so that everyone can decode
the result. I also do not have the facilities to pu t it in an ftp site. If
anyone wants to mail me I'll deliver the complete s ource to them so that they
can do it for me. For now I will post the code in l ong-hand, in five parts
(~300 lines per part), and I will thread them off t his message so that it
doesn't clutter the Newsgroup.

Part 1 - Definitions
Part 2 - Real mode entry point
Part 3 - Protected mode entry point
Part 4 - User code (small)
Part 5 - Interrupt and exception handlers (large)

WARNINGS (One legal, one moral)
===============================
As a professional programmer, I identify with my co de. This may be old, and
not how I do things now, but it is still mine. I do n't mind showing this code
to others so that they can learn, and you can exper iment to your heart's
content, but DO NOT USE ANY PART of this code in ne w software, whether
commercial or otherwise.

Finally, this code is the ultimate in unfriendlines s! It assumes that the
whole machine belongs to it - including ALL RAM. Th is means that it should
be run on a vanilla system - no HIMEM.SYS, no memor y managers, and DEFINITELY
no disk-cache programs! Your memory WILL be written over!

John Burger

;** ***************************
; Copyright (c) John Burger, 1990-1995. All rights reserved.
; This code has been placed in the public domain by John Burger for example
; purposes only - to demonstrate various techniques for programming the
; Intel 80386 et. al. in protected mode. It is avai lable for other people to
; experiment with, NOT to include in other software , whether commercial or
; otherwise.
;** **************************

; This program switches into protected mode (on a ' 386+), starts many tasks
; that all do the same thing in different windows, and continues until the
; <Esc> key is pressed and released.
;
; Minimum system: '386 with 2Mb RAM (to test A20 li ne)
; Standard A20 line
; If A20 line non-standard, or <2Mb RAM available, modify the code to use DOS
; RAM rather than extended RAM.
;
; *** WARNING ***
; System should be 'vanilla': No HIMEM.SYS, memory manager or disk cache.
; This program accesses the hardware directly, and will TRASH any memory-
; manager by writing all over it!

;
; Experiments to try:
; - Various values for WindowWidth and WindowHeigh t:
; 0,0 maximises number of tasks;
; - Various values for SecTick to slow down and sp eed up operation:
; Below 19 and above 65535 will cause compiler errors.
; Higher values may cause GP faults!
; - Insert an INT 3 anywhere in ProtSeg, BallCode or IntCode.
; - Insert any INT in the above segments, AFTER th ey've been set up.
; Look for *** in ProtSeg
; - Modify code to generate various exceptions:
; Crash the stack (MOV SP,1; PUSH AX)
; Access illegal memory (INC BYTE PTR ES:[0FFF FFFFh]
; Invalid op-codes (LOCK XOR AX,AX)
; Enable single-step debugging (PUSHF; POP AX; OR AX,100h; PUSH AX; POPF)
; The single-step debug handler simply waits for the user to press
; <Enter> or <Space>, then returns. To indic ate waiting, it uses a
; "dingle"<tm> in the top right corner of th e screen. Pressing <Enter>
; stops tracing.
;

 WARN ; Listen to every assembler complaint!

 .386P ; Going to be doing 386 Prot Mode inst

;
; Stack segment, reserved by DOS but used in protec ted mode also.
;
StackSeg SEGMENT STACK PARA USE32 ; DOS stack
 DB 100 DUP ('STACK ') ; (Used to ID memory)
StackTop EQU $; For 16 bi t code
StackSeg ENDS

StackSize EQU 1024 ; For 32 bi t stacks

;
; Multitasking constants:
; Reduce SecTick for slower machines.
; Note certain values may cause errors.
; Change WindowWidth and WindowHeight to change n umber of windows.
; Note certain values may cause errors.
; Change BounceTime to slow down the bouncing.
; Change Ball to change character that bounces.
;
SecTick EQU 1000 ; Task swit ches per second

WindowWidth EQU 4 ; Width of a window
WindowHeight EQU 3 ; Height of a window
BounceTime EQU 1 ; Time dela y before moving
Ball EQU 1 ; Character to bounce

;== ===========================
;
; System constants. These are defined by the hardwa re.
;
ClockFreq EQU 1193200 ; Timer 0 f requency

; Constants in Granular byte of descriptor table en try
PageGran EQU 80h
ByteGran EQU 00h
More64K EQU 40h
Less64K EQU 00h
LargeAddr EQU 40h
SmallAddr EQU 00h
Available EQU 10h
LimitHi EQU 0Fh

; Constants in Type byte of descriptor table entry
Present EQU 80h
NotPresent EQU 00h
DPL EQU 60h
Privilege0 EQU 00h
Privilege1 EQU 20h
Privilege2 EQU 40h
Privilege3 EQU 60h
Memory EQU 10h
System EQU 00h
Execable EQU 08h
NotExecable EQU 00h
Gate386 EQU 08h
Gate286 EQU 00h
ExpandDown EQU 04h
ExpandUp EQU 00h
Conform EQU 04h
NonConform EQU 00h
Writable EQU 02h
NotWritable EQU 00h
Readable EQU 02h
NotReadable EQU 00h
Accessed EQU 01h
NotAccessed EQU 00h

; Bit indicating descriptor is in LDT
LocalDT EQU 04h

; Descriptor types
AvailTSS EQU 1
LDT EQU 2
BusyBit EQU 2
BusyTSS EQU 3
CallGate EQU 4
TaskGate EQU 5
IntGate EQU 6
TrapGate EQU 7

Int386 EQU Present+Gate386+IntGate ; Dis able ints within routine
Trap386 EQU Present+Gate386+TrapGate ; Kee p ints
Task386 EQU Present+TaskGate ; Not Gate386 - not defined!

;== ===========================
;
; System structures. These are defined by the hardw are.
;

; Descriptor structure
Descriptor STRUC
LimitLo DW ?
BaseLo DW ?
BaseMid DB ?
DescType DB ?
DescGran DB ?
BaseHi DB ?
Descriptor ENDS

; Gate structure
Gate STRUC
OffsetLo DW ?
Selector DW ?
Count DB ?
GateType DB ?
OffsetHi DW ?
Gate ENDS

; Pseudo-descriptor table pointer (GDT/IDT)
DTPtr STRUC ; Descriptor Table Po inter
Limit DW ?
Base DD ?
DTPtr ENDS

;== ===========================
; System segments. The structure of these is define d by the hardware.

;
; Interrupt Descriptor Table.
; Intel has reserved the first 32 interrupts, and g iven the first half of them
; functions. Note that hardware vectors have been m oved!
; Since it is such a small program (ha!), the entir e table can be hard-coded
; here. Note that the descriptor fields are simply offsets into the GDT.
; Note also that four faults are represented by the ir own tasks, as
; recommended by Intel - Debug, Double, BadTSS, and BadStack. These all
; guarantee that a valid state will be available to the system to process the
; fault.
;
IDT SEGMENT PARA USE16
Divide Gate <OFFSET DivideInt,OFFSET IntCod e,0,Trap386,0>
;Debug Gate <0,OFFSET DebugTSS,0,Task386,0 > ; Debug as separate task?
Debug Gate <OFFSET DebugInt,OFFSET IntCode ,0,Trap386,0>
NMI Gate <OFFSET NMIInt,OFFSET IntCode,0 ,Trap386,0>
Break Gate <OFFSET BreakInt,OFFSET IntCode ,0,Trap386,0>
Overflow Gate <OFFSET OverInt,OFFSET IntCode, 0,Trap386,0>
OutBound Gate <OFFSET BoundInt,OFFSET IntCode ,0,Trap386,0>
InvalidOp Gate <OFFSET OpInt,OFFSET IntCode,0, Trap386,0>
No387 Gate <OFFSET No387Int,OFFSET IntCode ,0,Trap386,0>
Double Gate <0,OFFSET DoubleTSS,0,Task386,0 >
Over387 Gate <OFFSET Over387Int,OFFSET IntCo de,0,Trap386,0>
BadTSS Gate <0,OFFSET BadTSSTSS,0,Task386,0 >
NoSegment Gate <OFFSET NoSegInt,OFFSET IntCode ,0,Trap386,0>
BadStack Gate <0,OFFSET StackTSS,0,Task386,0>
General Gate <OFFSET GenInt,OFFSET IntCode,0 ,Trap386,0>
PageFault Gate <OFFSET PageInt,OFFSET IntCode, 0,Trap386,0>
 Gate <OFFSET Int15,OFFSET IntCode,0, Trap386,0>
Bad387 Gate <OFFSET Bad387Int,OFFSET IntCod e,0,Trap386,0>
 Gate <OFFSET Int17,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int18,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int19,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int20,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int21,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int22,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int23,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int24,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int25,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int26,OFFSET IntCode,0, Trap386,0>

 Gate <OFFSET Int27,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int28,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int29,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int30,OFFSET IntCode,0, Trap386,0>
 Gate <OFFSET Int31,OFFSET IntCode,0, Trap386,0>
Timer Gate <OFFSET TimerInt,OFFSET IntCode ,0,Int386,0>
Keyboard Gate <OFFSET KeyInt,OFFSET IntCode,0 ,Int386,0>
Slave Gate <OFFSET SlaveInt,OFFSET IntCode ,0,Int386,0>
COM2 Gate <OFFSET COM2Int,OFFSET IntCode, 0,Int386,0>
COM1 Gate <OFFSET COM1Int,OFFSET IntCode, 0,Int386,0>
 Gate <OFFSET IRQ5,OFFSET IntCode,0,I nt386,0>
 Gate <OFFSET IRQ6,OFFSET IntCode,0,I nt386,0>
Printer Gate <OFFSET PrintInt,OFFSET IntCode ,0,Int386,0>
 Gate <OFFSET IRQ8,OFFSET IntCode,0,I nt386,0>
 Gate <OFFSET IRQ9,OFFSET IntCode,0,I nt386,0>
 Gate <OFFSET IRQ10,OFFSET IntCode,0, Int386,0>
 Gate <OFFSET IRQ11,OFFSET IntCode,0, Int386,0>
 Gate <OFFSET IRQ12,OFFSET IntCode,0, Int386,0>
 Gate <OFFSET IRQ13,OFFSET IntCode,0, Int386,0>
 Gate <OFFSET IRQ14,OFFSET IntCode,0, Int386,0>
 Gate <OFFSET IRQ15,OFFSET IntCode,0, Int386,0>
IDTLimit EQU $-1
IDT ENDS

;
; Global Descriptor Table.
;
; None of the Base fields can be filled in, as it i s not know where the code
; will load into memory.
;
; Only the first entry is reserved by Intel. This i s the unused descriptor to
; allow the system to detect null pointer reference s.
; The others are arbitrary.
; The two MSDOS ones are for the return to DOS - to reset the descriptors back
; to valid values.
; GDTData and IDTData are aliases for the GDT and I DT respectively.
; ProtCode is the protected-mode code segment for i ntialisation and wrapup.
; IntCode is the protected-mode code segment for in terrupt code. (32-bit)
; Screen is the CGA/EGA/VGA/SVGA text screen.
; MainTask is the task state segment of the executi ve.
; MainStack is the level 0 stack for the main task.
; StackTSS is the task state segment for a stack fa ult.
; TSSStack is the stack for the stack fault task.
; BadTSSTSS is the task state segment for a TSS fau lt.
; BTStack is the stack for the BadTSS fault task.
; DoubleTSS is the task state segment for a double fault.
; DblStack is the stack for the double fault task.
; DebugTSS is the task state segment for the debug trap.
; DbgStack is the stack for the debug trap task.
; More is the room for all of the TSSs and LDTs of the user tasks.
;
GDT SEGMENT PARA USE16
 Descriptor<>
MSDOSCode Descriptor<0FFFFh,?,?,Present+Memory+Exec able+Readable,ByteGran,0>
MSDOSData Descriptor<0FFFFh,?,?,Present+Memory+Writ able,ByteGran,0>
GDTData Descriptor<GDTLimit,?,?,Present+Memory+Wr itable,ByteGran,0>
IDTData Descriptor<IDTLimit,?,?,Present+Memory+Wr itable,ByteGran,0>
ProtCode Descriptor<ProtLimit,?,?,Present+Memory+E xecable+Readable,ByteGran,0>
IntCode Descriptor<IntLimit,?,?,Present+Memory+Ex ecable+Readable,ByteGran+LargeAddr,0>
Screen Descriptor<3999,8000h,0Bh,Present+Privile ge3+Memory+Writable,ByteGran,0>
StackTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>
TSSStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
BadTSSTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>
BTStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
DoubleTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>
DblStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
DebugTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>
DbgStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>

MainTask Descriptor<TSSLimit,?,?,Present+System+Ga te386+AvailTSS,ByteGran,0>
MainStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
UserTasks EQU $
 ORG 0FFFFh
GDTLimit EQU $
GDT ENDS

;
; Task State Segment.
; The structure is defined by Intel. Note multiple TSSs will be created.
;
TSS SEGMENT PARA USE16
BackLink DW 0
 DW 0
ESP0 DD 0
SS0 DW 0
 DW 0
ESP1 DD 0
SS1 DW 0
 DW 0
ESP2 DD 0
SS2 DW 0
 DW 0
PDBR DD 0 ; Page Dire ctory Base Register
EIPReg DD ?
EFlags DD ?
EAXReg DD ?
ECXReg DD ?
EDXReg DD ?
EBXReg DD ?
ESPReg DD ?
EBPReg DD ?
ESIReg DD ?
EDIReg DD ?
ESSeg DW ?
 DW 0
CSSeg DW ?
 DW 0
SSSeg DW ?
 DW 0
DSSeg DW ?
 DW 0
FSSeg DW ?
 DW 0
GSSeg DW ?
 DW 0
LDTR DW 0 ; Local Des criptor Table Register
 DW 0
Tracing DW 0
IOMapBase DW TSSSize
TSSSize EQU $-BackLink
TSSLimit EQU TSSSize-1
TSS ENDS

; Debugger TSS
TSSDebug SEGMENT PARA USE16
 DB TSSSize DUP (?)
TSSDebug ENDS

; Double TSS
TSSDouble SEGMENT PARA USE16
 DB TSSSize DUP (?)
TSSDouble ENDS

; Bad TSS TSS
TSSTSS SEGMENT PARA USE16
 DB TSSSize DUP (?)
TSSTSS ENDS

; Bad Stack TSS
BadStackTSS SEGMENT PARA USE16
 DB TSSSize DUP (?)
BadStackTSS ENDS

;
; Local Descriptor Table.
; Each user gets their own LDT, with a descriptor f or:
; Stack0: level 0 stack
; Stack3: level 3 stack (levels 1 and 2 not used)
; TaskCode: user code segment - all user code is i n the same segment
; TaskData: user data segment - all user data is i n a private segment
;
TaskLDT SEGMENT PARA USE16
Stack0 Descriptor<>
Stack3 Descriptor<>
TaskCode Descriptor<>
TaskData Descriptor<>
LDTLimit EQU $-1
TaskLDT ENDS

; DOS/Protected mode data
Data SEGMENT PARA USE16
OldIDT DTPtr <> ; Old (DOS) IDT value
GDTPtr DTPtr <GDTLimit,?> ; GDT point er constructed here
IDTPtr DTPtr <IDTLimit,?> ; IDT point er constructed here
Corner DW 0101h ; The start ing window corner
TaskJump LABEL PWORD ; This is t he task jump address
 DD 0 ; The offse t part is unused
NextTask DW 0 ; The next task to run
LastTask DW 0 ; The last task in the GDT
KeyPress DB 0 ; A one-key buffer!
TaskLock DB 0 ; When 1, d o NOT task switch!
Data ENDS

Burger / John Adriaan (ISE) < u86...@student.canberra.edu.au > wrote:
>The Code
>========
>I have had trouble attaching text to News articles so that everyone can decode
>the result. I also do not have the facilities to p ut it in an ftp site. If
>anyone wants to mail me I'll deliver the complete source to them so that they
>can do it for me. For now I will post the code in long-hand, in five parts
>(~300 lines per part), and I will thread them off this message so that it
>doesn't clutter the Newsgroup.
>
>Part 1 - Definitions
>Part 2 - Real mode entry point
>Part 3 - Protected mode entry point
>Part 4 - User code (small)
>Part 5 - Interrupt and exception handlers (large)

I knew I was forgetting something, but I couldn't r emember what it was!
It hit. To assemble the above, get it all into one file in the above order.
Then simply assemble it with

TASM PROTMODE (or whatever assembler you use - n o DEFINEs needed)

then

TLINK /3 PROTMODE (or whatever. There are 32-bit fixups: Borland uses /3)

The result is a 69K-odd .EXE, 4K of which is the co de, 64K is the GDT!

;== ===========================
;
; This is the DOS code segment, that starts and sto ps the program.
;

RealSeg SEGMENT PARA USE16

 ASSUME CS:RealSeg,DS:Nothing,ES:Nothin g,FS:Nothing,GS:Nothing

Entry PROC FAR
;
; Initialise.
;
 MOV AH,1 ; Set curso r size
 MOV CX,2607h ; to invisi ble!
 INT 10h ; using BIO S

 MOV AX,SEG Data ; Point FS to data
 MOV FS,AX
 ASSUME FS:Data ; And tell assembler

 MOV AX,SEG GDT ; Point DS to GDT
 MOV DS,AX
 ASSUME DS:GDT ; And tell assembler

 SIDT FS:[OldIDT] ; Store old IDT pointer (for recall)

;
; Initialise GDT base entries.
;
 XOR EAX,EAX ; Zero EAX
 MOV AX,SEG RealSeg ; Get s tart segment into AX
 MOV BX,OFFSET MSDOSCode ; Point to GDT entry
 CALL StoreDesc ; And u pdate GDT

 MOV AX,SEG Data ; Get d ata segment into AX
 MOV BX,OFFSET MSDOSData ; Point to GDT entry
 CALL StoreDesc ; And u pdate GDT

 MOV AX,SEG ProtSeg ; Get P rot code segment into AX
 MOV BX,OFFSET ProtCode ; Point to GDT entry
 CALL StoreDesc ; And u pdate GDT

 MOV AX,SEG IntSeg ; Get I nt segment into AX
 MOV BX,OFFSET IntCode ; Point to GDT entry
 CALL StoreDesc ; And u pdate GDT

 MOV AX,SEG StackSeg ; Get S tack segment into AX
 MOV BX,OFFSET MainStack ; Point to GDT entry
 CALL StoreDesc ; And u pdate GDT

 MOV AX,SEG GDT ; Get G DT segment into AX
 SHL EAX,4 ; Turn into linear address
 MOV FS:[GDTPtr.Base],EAX ; Store into GDT pointer
 MOV BX,OFFSET GDTData ; Point to GDT entry
 CALL StoreLin ; And u pdate GDT

 MOV AX,SEG IDT ; Get I DT segment into AX
 SHL EAX,4 ; turn into linear address
 MOV FS:[IDTPtr.Base],EAX ; Store into IDT pointer
 MOV BX,OFFSET IDTData ; Point to GDT entry
 CALL StoreLin ; And u pdate GDT

 MOV AH,0DFh ; Enabl e A20 line
 CALL GateA20 ; Call Gate routine
 JNZ FailA20 ; Didn' t work! Bomb!
 LGDT FS:[GDTPtr] ; Point to GDT

 LIDT FS:[IDTPtr] ; Point to IDT

 MOV EAX,CR0 ; Get c urrent CR0
 OR EAX,1 ; Set P rotected Mode bit
 MOV CR0,EAX ; NOW I N PROTECTED MODE!

; Getting the assembler to assemble a protected mod e jump with the correct
; segment and offset is next to impossible. So just hard-code it!

 DB 0EAh ; JMP F AR ProtCode:ProtMode
 DW OFFSET ProtMode,OFFSET ProtCode

; Jump back here to return to real mode.

BackReal:
 XOR AX,AX ; No Loc al Descriptor Table
 LLDT AX
 MOV AX,OFFSET MSDOSData ; Reload ALL segment registers
 MOV DS,AX ; to poi nt them to DOS-type
 MOV ES,AX ; segmen ts
 MOV FS,AX
 MOV GS,AX
 MOV SS,AX
 MOV SP,0FFFEh ; Just t emporary, I promise!
 MOV EAX,CR0 ; Get cu rrent CR0
 AND EAX,NOT 1 ; Reset protected mode bit
 MOV CR0,EAX ; Back i n real mode

;
; Now the trick is getting the assembler to assembl e a FAR jump to the
; next instruction! It always optimises it out! So hard-code it again.
;
 DB 0EAh
 DW OFFSET RealMode,SEG RealSeg ; J MP FAR RealSeg:RealMode
RealMode:
 MOV AX,SEG StackSeg ; Put st ack back
 MOV SS,AX
 MOV SP,OFFSET StackTop ; SP too
 MOV AX,SEG Data ; Re-rel oad all segment registers
 MOV DS,AX ; in rea l mode
 MOV ES,AX
 MOV FS,AX
 MOV GS,AX
 ASSUME DS:Data,ES:Nothing,FS:Nothing,G S:Nothing ; Tell assembler
 LIDT [OldIDT] ; Restor e IDT pointer

;
; Restore timer back to 18.2 times a second
;
 MOV AL,0 ; Diviso r for ssllllloooooooww!
 OUT 40h,AL ; Low by te
 JMP $+2 ; (tap f oot)
 OUT 40h,AL ; High b yte

;
; Restore Priority Interrupt Controllers (PICs) to DOS expectations
;
 MOV AL,11h ; Initia lise PICs
 OUT 20h,AL
 OUT 0A0h,AL

 MOV AL,08h ; PIC1 @ Int 08h
 OUT 21h,AL
 MOV AL,70h ; PIC2 @ Int 70h
 OUT 0A1h,AL

 MOV AL,00000100b ; PIC1 h as slave on IRQ2
 OUT 21h,AL

 MOV AL,02h ; PIC2 i s slaved to IRQ2
 OUT 0A1h,AL

 MOV AL,01h ; 80x86 mode
 OUT 21h,AL
 OUT 0A1h,AL

 MOV AL,00h ; Enable all interrupts
 OUT 21h,AL
 OUT 0A1h,AL

 MOV AH,0DDh ; Restor e A20 line
 CALL GateA20
FailA20:
 STI
 MOV AH,1 ; Restor e cursor
 MOV CX,0607h
 INT 10h
 MOV AH,2 ; Cursor to bottom of screen
 MOV BH,0
 MOV DX,1700h
 INT 10h
 MOV AX,4C00h ; Exit p rogram
 INT 21h
Entry ENDP

StoreDesc PROC NEAR
 SHL EAX,4 ; Turn into linear address
StoreLin:
 MOV [BX.BaseLo],AX ; Store into GDT
 SHR EAX,16 ; Get h igh part of EAX
 MOV [BX.BaseMid],AL ; And s tore
 RET
StoreDesc ENDP

GateA20 PROC NEAR
 CLI ; Criti cal code!
 CALL Wait8042 ; Wait for it to be ready
 JNZ SHORT Dead8042 ; Nope, so dead
 MOV AL,0D1h ; Progr am data port
 OUT 64h,AL ; (to c ontrol port)
 CALL Wait8042 ; Wait to accept command
 JNZ SHORT Dead8042 ; Nope, so dead
 MOV AL,AH ; Value to program
 OUT 60h,AL ; (to d ata port)
Wait8042:
 XOR CX,CX ; Plent y long enough!
Loop8042:
 IN AL,64h ; Get c urrent state
 AND AL,2 ; Busy?
 LOOPNZ Loop8042 ; Yep, so keep waiting
Dead8042:
 RET ; No lo nger.
GateA20 ENDP

RealSeg ENDS

;== ===========================
;
; Protected mode code segment (still USE16). Used o n initial start in
; protected mode, to initialise all tasks, then aga in to return to DOS.
;
ProtSeg SEGMENT PARA USE16

 ASSUME CS:ProtSeg,DS:Nothing,ES:Nothin g,FS:Nothing,GS:Nothing

ProtMode:
 CLI ; Not re ady yet!
 MOV AX,OFFSET MainStack ; Reload SS under protected mode
 MOV SS,AX
 MOV ESP,OFFSET StackTop ; Availa ble!

 PUSH LARGE 2 ; All sp ecial bits zero
 POPFD ; In fla gs register

;
; Reprogram Peripheral Interrupt Controllers (PICs) to move them out of the
; way of the Intel-reserved interrupts.

;
 MOV AL,11h ; Initia lise PICs
 OUT 20h,AL
 OUT 0A0h,AL

 MOV AL,20h ; PIC1 @ 20h
 OUT 21h,AL
 MOV AL,28h ; PIC2 @ 28h

 OUT 0A1h,AL

 MOV AL,00000100b ; PIC1 h as slave on IRQ2
 OUT 21h,AL
 MOV AL,02h ; PIC2 i s slaved on IRQ2
 OUT 0A1h,AL

 MOV AL,1 ; 80x86 mode
 OUT 21h,AL
 OUT 0A1h,AL

 MOV AL,0 ; Enable all interrupts
 OUT 21h,AL
 OUT 0A1h,AL
;
; Reprogram timer to speed up task switching.
;
 MOV AX,ClockFreq/SecTick ; Diviso r

 OUT 40h,AL ; Low by te
 JMP $+2 ; (tap f oot)
 MOV AL,AH ; High b yte
 OUT 40h,AL

 MOV AX,OFFSET GDTData ; Point to desired segments
 MOV DS,AX
 ASSUME DS:GDT ; And te ll assembler!

 MOV AX,OFFSET MSDOSData

 MOV FS,AX
 ASSUME FS:Data

 MOV AX,OFFSET Screen
 MOV ES,AX
 MOV GS,AX

 MOV FS:[TaskLock],1 ; Disabl e task switching for now
 MOV FS:[LastTask],OFFSET MainTask ; Point to current last task

 MOV AX,0700h+' ' ; Grey s pace
 XOR DI,DI ; Screen pointer
 MOV CX,2000 ; 2000 s creen locations
 REP STOSW ; Clear screen

 STI ; You ca n start now!

;
; Initialise remaining TSSs, in case a fault happen s!
;
 MOV EAX,SEG TSS
 SHL EAX,4
 MOV BX,OFFSET MainTask
 MOV CX,OFFSET TSSSize
 MOV DL,Present+System+Gate386+Avail TSS
 MOV DH,ByteGran
 CALL AssignMem
 LTR BX ; Poin t Task Register to it

; Use memory above 1 Meg for TSS stacks
 MOV ESI,110000h ; Poin t to memory above 1Mb+64K

 MOV EAX,SEG TSSDebug ; Init ialise Debug TSS
 MOV BX,OFFSET DebugTSS ; Poin t to descriptor table entry
 MOV EBP,OFFSET DebugInt ; Star ting instruction to use
 CALL AssignTSS

 MOV EAX,SEG TSSDouble ; Init ialise Double TSS
 MOV BX,OFFSET DoubleTSS ; Poin t to descriptor table entry
 MOV EBP,OFFSET DoubleInt ; Star ting instruction to use
 CALL AssignTSS

 MOV EAX,SEG TSSTSS ; Init ialise BadTSS TSS
 MOV BX,OFFSET BadTSSTSS ; Poin t to descriptor table entry
 MOV EBP,OFFSET BadTSSInt ; Star ting instruction to use
 CALL AssignTSS

 MOV EAX,SEG BadStackTSS ; Init ialise BadStack TSS
 MOV BX,OFFSET StackTSS ; Poin t to descriptor table entry
 MOV EBP,OFFSET StackInt ; Star ting instruction to use
 CALL AssignTSS

 MOV FS:[TaskLock],0 ; Can now enable task switching

; *** Insert any INT after this point ***
; (before this point I don't guarantee anything!)

;
; Now create each task
;
 MOV BX,OFFSET UserTasks-SIZE Descri ptor
 MOV CX,(80/(WindowWidth+2))*(25/(Wi ndowHeight+2)) ; No. tasks
TaskLoop:
 PUSH CX

; Allocate LDT
 MOV CX,OFFSET LDTLimit ; Lo cal descriptor table size
 CALL GetMem ; Al locate memory
 MOV DL,Present+Memory+Writable ; As data segment
 MOV DH,ByteGran
 CALL AssignMem ; Mo dify GDT

; Initialise LDT
 PUSH DS

 PUSH BX ; Sa ve GDT pointer
 MOV DS,BX ; Po int to LDT
 MOV BX,-SIZE Descriptor

; Allocate Stack0
 MOV CX,StackSize-1 ; Si ze of stack
 CALL GetMem ; Ge t Stack0
 MOV DL,Present+Memory+Writable ; As data segment
 MOV DH,ByteGran+More64k
 CALL AssignMem ; Mo dify LDT

; Allocate Stack3
 MOV CX,StackSize-1 ; Si ze of stack
 CALL GetMem ; Ge t Stack3
 MOV DL,Present+Privilege3+Memory+Wr itable ; As data segment
 MOV DH,ByteGran+More64k
 CALL AssignMem ; Mo dify LDT

; Point to user code
 MOV EAX,SEG BallCode ; Co de segment
 SHL EAX,4 ; As linear address
 ADD BX,SIZE Descriptor ; Ne xt descriptor
 MOV CX,OFFSET CodeLimit ; By tes of code
 MOV DL,Present+Privilege3+Memory+Ex ecable+Readable ; As code
 MOV DH,ByteGran+LargeAddr
 CALL AssignMem ; Mo dify LDT

; Allocate user data
 MOV CX,OFFSET DataLimit ; Si ze of data
 CALL GetMem ; Ge t TaskData
 MOV DL,Present+Privilege3+Memory+Wr itable ; As data segment
 MOV DH,ByteGran
 CALL AssignMem ; Mo dify LDT

 POP BX ; Re store GDT pointer
 POP DS
 ASSUME DS:GDT ; So tell assembler

 MOV [BX.DescType],Present+Privilege 3+System+LDT ; Is now LDT!

;
; Initialise TaskData to maintain uniqueness
; To pre-initialise data, access is needed to the t wo variables that define
; the window. To get this access requires loading a segment register. The
; descriptor for this segment is in the LDT for the task. So, temporarily
; point the LDT for the Main task to this LDT, load the segment register,
; and access the variables. BUT. The LDTR is NOT au tomatically saved on a
; task switch, and the LDT field in MainTask's TSS is zero, not this temporary
; LDT. So if any task switches happen in this criti cal region, on return a
; GP fault for ES will occur (points to a non-exist ant LDT!).
;
 CLI ; IN Ts can stuff up LDTR
 LLDT BX ; Us e as LDT for now
 MOV AX,OFFSET TaskData+LocalDT ; Po int to allocated TaskData
 MOV ES,AX ; Wi th ES
 ASSUME ES:BallData ; An d tell assembler

 MOV AX,FS:[Corner] ; Ge t global corner
 MOV ES:[Top],AH ; St ore as Top
 MOV ES:[Left],AL ; An d Left

 XOR AX,AX ; Do n't point to LDT
 MOV ES,AX ; wi th ES
 LLDT AX ; an ymore!
 STI ; LD TR safe again

 ADD BYTE PTR FS:[Corner],WindowWidth+2 ; Next across
 CMP BYTE PTR FS:[Corner],80-WindowWidth ; Too far?

 JB SHORT AllocTSS ; Not yet
 ADD BYTE PTR FS:[Corner+1],WindowHeight+2 ; Yes, so next down
 MOV BYTE PTR FS:[Corner],1 ; And start again
AllocTSS:
 MOV CX,TSSLimit ; Si ze of a TSS
 CALL GetMem ; Ge t memory for TSS
 MOV DL,Present+Memory+Writable ; As a data segment
 MOV DH,ByteGran
 CALL AssignMem ; Mo dify GDT

 PUSH DS
 PUSH ES
 MOV DS,BX ; Po int to new segment
 MOV ES,BX
 ASSUME DS:TSS ; An d tell (fool) assembler

 XOR EAX,EAX ; Zero TSS
 XOR DI,DI
 MOV CX,TSSSize/4
 REP STOSD

 MOV [ESP0],StackSize ; In itialise Stack0
 MOV [SS0],OFFSET Stack0+LocalDT
 MOV [EIPReg],OFFSET BallEntry ; En try point
 MOV [EFlags],3202h ; IO PL = 3!
 MOV [ESPReg],StackSize
 MOV [CSSeg],OFFSET TaskCode+LocalDT +3 ; DPL=3 sets CPL
 MOV [SSSeg],OFFSET Stack3+LocalDT+3 ; DPL=3
 MOV [DSSeg],OFFSET TaskData+LocalDT +3 ; DPL=3
 MOV [LDTR],BX ; LD T is current descriptor..
 SUB [LDTR],SIZE Descriptor ; .. .minus 1
 MOV [IOMapBase],TSSSize ; No need to worry about I/O

 POP ES ; Do n't point to TSS any more
 POP DS ; Re store GDT pointer
 ASSUME DS:GDT ; So tell assembler

 MOV [BX.DescType],Present+System+Ga te386+AvailTSS ; Now a TSS!
 MOV FS:[LastTask],BX ; An d can be switched to

 POP CX ; Ge t task counter
 DEC CX ; An y left?
 JNZ TaskLoop ; Ye s, so continue

 MOV FS:[TaskLock],0 ; Ca n now start task switching
 AND [MainTask.DescType],NOT Present ; But not here!
TaskEnd:
 JMP TaskEnd ; Wa it for keypress to leave

BackToDOS:
 CLI ; Di sable interrupts
; Same assembler problem: protected mode JMP
 DB 0EAh ; JM P FAR MSDOSCode:BackReal
 DW OFFSET BackReal,OFFSET MSDOSCod e

GetMem PROC NEAR
 MOV EAX,ESI ; New address
 MOVZX ECX,CX ; Size to allocate
 ADD ESI,ECX ; Allo cated!
 AND ESI,NOT 0FFh ; (Ens ure on 256-byte boundary)
 ADD ESI,100h ; And don't overlap!
 ADD BX,SIZE Descriptor ; New descriptor too
 RET
GetMem ENDP

AssignMem PROC NEAR
 MOV [BX.LimitLo],CX ; Low limit
 MOV [BX.BaseLo],AX ; Low base

 SHR EAX,16 ; Get high base
 MOV [BX.BaseMid],AL ; Midd le base
 MOV [BX.DescType],DL ; Type
 MOV [BX.DescGran],DH ; Gran ularity
 MOV [BX.BaseHi],AH ; High base (usually zero!)
 RET
AssignMem ENDP

AssignTSS PROC NEAR
 SHL EAX,4 ; Make address linear
 MOV CX,OFFSET TSSLimit ; Size of segment
 MOV DL,Present+Memory+Writable ; Ty pe to allocate
 MOV DH,ByteGran
 CALL AssignMem ; Assi gn to descriptor

 PUSH DS ; Poin t to TSS temporarily
 PUSH ES
 MOV DS,BX ; (Not e still a data descriptor)
 MOV ES,BX
 ASSUME DS:TSS ; Tell (fool) assembler

 XOR AX,AX ; Zero TSS
 XOR DI,DI
 MOV CX,TSSSize/2
 REP STOSW
 MOV [EIPReg],EBP ; Star ting instruction
 MOV [EFlags],0202h ; Flag s to use
 MOV [ESPReg],OFFSET StackTop ; Stac k pointer to use
 MOV [CSSeg],OFFSET IntCode ; Code segment to use
 MOV [SSSeg],BX ; Stac k to use
 ADD [SSSeg],SIZE Descriptor ; (1 p ast TSS)
 MOV [IOMapBase],TSSSize ; Don' t worry about I/O
 POP ES ; Don' t point to TSS any more!
 POP DS
 ASSUME DS:GDT
 MOV [BX.DescType],Present+System+Ga te386+AvailTSS ; Now a TSS!

 MOV CX,OFFSET StackTop ; Al located stack size
 CALL GetMem ; Ne xt descriptor
 MOV DL,Present+Memory+Writable ; Wr itable memory
 MOV DH,ByteGran+More64k ; 32 -bit access
 CALL AssignMem ; Mo dify LDT
 RET
AssignTSS ENDP

ProtLimit EQU $-1 ; Limi t of ProtSeg

ProtSeg ENDS

 ISE

İletiyi şu dile çevir: Türkçe

;== ===========================
;
; User data and code. Note that code is set up for entry by initial values in
; TSS.

;
BallData SEGMENT PARA USE16
Top DB ?
Left DB ?
Bottom DB ?
Right DB ?
XLoc DB ?
YLoc DB ?
DeltaX DB ?
DeltaY DB ?
Counts DD ?
DataLimit EQU $-1
BallData ENDS

BallCode SEGMENT PARA USE32

 ASSUME CS:BallCode,DS:BallData,ES:Noth ing,FS:Nothing,GS:Nothing

BallEntry PROC
 MOV AX,OFFSET Screen ; Poin t to screen
 MOV ES,EAX ; With ES
 MOV AL,[Top] ; Turn current Top
 MOV [YLoc],AL ; Into YLoc
 MOV [Bottom],AL ; And bottom
 ADD [Bottom],WindowHeight-1 ; Shif t bottom down
 DEC AL ; Turn into memory address
 MOV AH,80*2 ; Row factor
 MUL AH
 MOVZX EBX,AX ; Into pointer

 MOVZX EAX,[Left] ; Get column
 MOV [XLoc],AL ; Into XLoc
 MOV [Right],AL ; And right
 ADD [Right],WindowWidth-1 ; Shif t right across
 DEC EAX ; Turn into memory address
 SHL EAX,1
 ADD EBX,EAX ; Add into pointer

 MOV EDI,EBX ; Get into STO pointer
 CALL DrawFrame ; And draw the frame
 ADD EBX,2*80+2 ; Firs t position in frame
 MOV BYTE PTR ES:[EBX],Ball ; Stor e ball into position
 MOV [DeltaX],1 ; Head to the right
 MOV [DeltaY],1 ; And head down
 MOV [Counts],0 ; Coun t to time
 STD
Bounce:
 MOV ECX,BounceTime ; Wait to bounce
BounceDelay:
 LOOP BounceDelay ; (tap foot)

 MOV EBP,EBX ; Old position

; Calculate new position
 MOV AL,[YLoc] ; Get current YLoc
 ADD AL,[DeltaY] ; Add in Delta
 CMP AL,[Top] ; Too high?
 JB SHORT YWrap ; Yes, so wrap
 CMP AL,[Bottom] ; Too low?
 JNA SHORT NoYWrap ; No, so don't wrap
YWrap:
 NEG [DeltaY] ; Reve rse direction
 ADD AL,[DeltaY] ; Undo mistake
 ADD AL,[DeltaY] ; Head properly!
NoYWrap:
 MOV [YLoc],AL ; Save away
 MOV AH,80*2 ; Row factor
 MUL AH ; Turn into memory address

 MOVZX EBX,AX ; Into index register

 MOVZX EAX,[XLoc] ; Get current XLoc
 ADD AL,[DeltaX] ; Add in Delta
 CMP AL,[Left] ; Too left?
 JB SHORT XWrap ; Yes, so wrap
 CMP AL,[Right] ; Too right?
 JNA SHORT NoXWrap ; No, so don't wrap
XWrap:
 NEG [DeltaX] ; Reve rse direction
 ADD AL,[DeltaX] ; Undo mistake
 ADD AL,[DeltaX] ; Head properly!
NoXWrap:
 MOV [XLoc],AL ; Save away
 MOV AH,0 ; Turn into memory address
 SHL EAX,1 ; Colu mn factor
 ADD EBX,EAX ; Add into memory address
 MOV BYTE PTR ES:[EBP],' ' ; Dele te old ball
 MOV WORD PTR ES:[EBX],0F00h+Ball ; Pain t new ball
 JMP Bounce ; And bounce forever!
BallEntry ENDP

DrawFrame PROC NEAR
 XOR ECX,ECX ; Zero high part of ECX
 MOV AH,0Fh ; Whit e background
 MOV AL,'Ú' ; TopL eft corner
 STOSW ; Stor e on screen
 MOV AL,'Ä' ; Top
 MOV CL,WindowWidth ; This many
 REP STOSW ; Stor e on screen
 MOV AL,'¿' ; TopR ight corner
 STOSW ; Stor e on screen
 ADD EDI,2*(80-WindowWidth-2) ; Next row
 MOV CL,WindowHeight ; Heig ht
 JCXZ NoSide ; None !
Side:
 PUSH ECX ; Need this later
 MOV AL,'³' ; A si de
 STOSW ; Stor e on screen
 MOV AL,' ' ; Blan k
 MOV CL,WindowWidth ; This many
 REP STOSW ; Stor e on screen
 MOV AL,'³' ; Othe r side
 STOSW ; Stor e on screen
 ADD EDI,2*(80-WindowWidth-2) ; Next row
 POP ECX ; Rest ore row count
 LOOP Side
NoSide:
 MOV AL,'À' ; Bott om left
 STOSW ; Stor e on screen
 MOV AL,'Ä' ; Bott om
 MOV CL,WindowWidth ; This many
 REP STOSW ; Stor e on screen
 MOV AL,'Ù' ; Bott om right
 STOSW ; Stor e on screen
 RET
DrawFrame ENDP

CodeLimit EQU $-1

BallCode ENDS

;== ===========================
;
; This segment is for interrupt code. As well as th e hardware interrupt
; handlers, there is also code to handle the variou s faults. Most of the
; code simply displays all of the registers' conten ts, then bombs back to

; DOS. The timer and keyboard interrupt, however, i s actually used.
; Note this segment is marked as being USE32. This was both as an experiment,
; and also because most instructions used will be 3 2-bit instructions, since
; I want to be able to display all of each register .
;
IntSeg SEGMENT PARA USE32

 ASSUME CS:IntSeg,DS:Nothing,ES:Nothing ,FS:Nothing,GS:Nothing

DivideInt:
 PUSH 0 ; Pseudo -error code
 PUSH 0 ; INT 0
 JMP Interrupt ; Show r egisters

;
; Simple code. Entered on single step interrupt, wa its for Enter or Space,
; then returns. Note dingle<tm> in top right corner indicates 'waiting'.
; Pressing Enter stops the single-step action
;
DebugInt PROC
 PUSH EBX ; Need t hese registers
 PUSH DS
 PUSH ES
 MOV BX,OFFSET MSDOSData ; Point to Data
 MOV DS,EBX

 ASSUME DS:Data ; And te ll assembler

 MOV BX,OFFSET Screen ; Point to screen
 MOV ES,EBX
 STI
KeyLoop:
 INC BYTE PTR ES:[009Eh] ; Dingle <tm> screen location
 CMP [KeyPress],57 ; Space pressed?
 JE SHORT EndDebug ; Yes, s o leave
 CMP [KeyPress],28 ; Enter pressed?
 JNE KeyLoop ; No, so keep waiting
 AND WORD PTR [ESP+14h],NOT 100h ; Yes, s o stop tracing
EndDebug:
 MOV [KeyPress],0 ; Key? W hat key?
 POP ES
 POP DS
 POP EBX
 IRETD ; Return from task
 JMP DebugInt ; Re-ent ry will appear here
DebugInt ENDP

;
; If above not required, use this instead (modify I DT).
;
BadDebugInt:
 PUSH 0 ; Pseudo -error code
 PUSH 1 ; INT 1
 JMP InterTask ; Get va lues from TSS
NMIInt:
 PUSH 0 ; Pseudo -error code
 PUSH 2 ; INT 2
 JMP Interrupt ; Displa y registers
BreakInt:
 PUSH 0 ; Pseudo -error code
 PUSH 3 ; INT 3
 JMP Interrupt ; Displa y registers

OverInt:
 PUSH 0 ; Etcete ra
 PUSH 4 ; Etcete ra
 JMP Interrupt ; Etcete ra
BoundInt:

 PUSH 0
 PUSH 5
 JMP Interrupt
OpInt:
 PUSH 0
 PUSH 6
 JMP Interrupt
No387Int:
 PUSH 0
 PUSH 7
 JMP Interrupt
DoubleInt:
 PUSH 31 ; Note n o pseudo-error code, as
 JMP InterTask ; Double Faults have a real one
Over387Int:
 PUSH 0
 PUSH 9
 JMP Interrupt
BadTSSInt:
 PUSH 10 ; Note n o pseudo-error code
 JMP InterTask ; Displa y registers from TSS

NoSegInt PROC
 PUSH EBX ; Oops, forgot to mark as present!
 PUSH DS ; (Didn' t really, but good test)
 MOV BX,OFFSET Screen
 MOV DS,EBX
 INC BYTE PTR DS:[0014h] ; Indica te on screen

 MOV BX,OFFSET GDTData ; Point to GDT
 MOV DS,EBX
 ASSUME DS:GDT
 MOV BX,[ESP+8] ; Get er ror code
 AND BX,NOT 07h ; Ignore extra bits
 OR [BX.DescType],Present ; Mark s egment as present
 POP DS
 POP EBX
 ADD ESP,4 ; Ignore error code
 IRETD ; And re start instruction
NoSegInt ENDP

StackInt:
 PUSH 12 ; Note n o pseudo-error code
 JMP InterTask ; Displa y registers from TSS
GenInt:
 PUSH 13 ; Note n o pseudo-error code
 JMP Interrupt
PageInt:
 PUSH 14 ; Note n o pseudo-error code
 JMP Interrupt
Int15:
 PUSH 0 ; Push p seudo-error code
 PUSH 15
 JMP Interrupt
Bad387Int:
 PUSH 0
 PUSH 16
 JMP Interrupt
Int17:
 PUSH 0
 PUSH 17
 JMP Interrupt

Int18:
 PUSH 0
 PUSH 18
 JMP Interrupt
Int19:

 PUSH 0
 PUSH 19
 JMP Interrupt
Int20:
 PUSH 0
 PUSH 20
 JMP Interrupt
Int21:
 PUSH 0
 PUSH 21
 JMP Interrupt
Int22:
 PUSH 0
 PUSH 22
 JMP Interrupt
Int23:
 PUSH 0
 PUSH 23
 JMP Interrupt
Int24:
 PUSH 0
 PUSH 24
 JMP Interrupt
Int25:
 PUSH 0
 PUSH 25
 JMP Interrupt
Int26:
 PUSH 0
 PUSH 26
 JMP Interrupt
Int27:
 PUSH 0
 PUSH 27
 JMP Interrupt
Int28:
 PUSH 0
 PUSH 28
 JMP Interrupt
Int29:
 PUSH 0
 PUSH 29
 JMP Interrupt
Int30:
 PUSH 0
 PUSH 30
 JMP Interrupt
Int31:
 PUSH 0
 PUSH 31
 JMP Interrupt

TimerInt PROC
 PUSH EAX ; Need t hese registers
 PUSH EBX
 PUSH DS
 PUSH ES
 MOV AL,20h ; Acknow ledge interrupt in PIC

 OUT 20h,AL ; (Note interrupts still off)

 MOV AX,OFFSET MSDOSData ; Point to Data
 MOV DS,EAX
 ASSUME DS:Data ; And te ll assembler

 CMP [TaskLock],0 ; Task s witching locked out?
 JNE SHORT NoSwitch ; Yes, s o do nothing

 MOV AX,OFFSET GDTData ; Point to GDT alias
 MOV ES,EAX
 ASSUME ES:GDT ; And te ll assembler

 STR AX ; Get cu rrent task number
 MOVZX EBX,AX ; Into i ndex pointer
TestTask:
 ADD EBX,SIZE Descriptor ; Look a t next descriptor
 CMP BX,[LastTask] ; Too fa r?
 JBE SHORT NotEndGDT ; Not ye t
 MOV EBX,OFFSET MainTask ; Yes, s o start again
NotEndGDT:
 CMP BX,AX ; Back h ere again?
 JE SHORT NoSwitch ; Yes, s o none to switch to
 CMP BYTE PTR ES:[EBX.DescType],Present+Ga te386+AvailTSS ; Is TSS?
 JNE TestTask ; No, so keep looking

 MOV [NextTask],BX ; New ta sk!
 JMP [TaskJump] ; So jum p to it (task switching)
NoSwitch:
 POP ES
 POP DS ; When j umps back, continues here
 POP EBX
 POP EAX
 IRETD ; So ret urn where you left off
TimerInt ENDP

KeyInt PROC
 PUSH EAX ; Need t hese registers
 PUSH DS
 MOV AX,OFFSET MSDOSData ; Point to data
 MOV DS,EAX

 ASSUME DS:Data ; And te ll assembler

 MOV AL,20h ; Acknow ledge PIC
 OUT 20h,AL ; (Note interrupts still off)
 IN AL,60h ; Get ch aracter from keyboard
 MOV [KeyPress],AL ; Store in global data
 CMP [KeyPress],129 ; Is it Esc released?
 JE IntDOS ; Yes, s o back to DOS!
 POP DS ; No, so continue
 POP EAX
 IRETD
KeyInt ENDP

SlaveInt:
 PUSH 0 ; Pseudo -error code
 PUSH 34 ; Note t his interrupt is not
 JMP SHORT IRQ ; possib le - it is the cascade.
COM2Int:
 PUSH 0
 PUSH 35

 JMP SHORT IRQ ; Acknow ledge PIC1
COM1Int:
 PUSH 0
 PUSH 36
 JMP SHORT IRQ
IRQ5:
 PUSH 0
 PUSH 37
 JMP SHORT IRQ
IRQ6:
 PUSH 0
 PUSH 38
 JMP SHORT IRQ
PrintInt:
 PUSH 0
 PUSH 39
 JMP SHORT IRQ
IRQ8:
 PUSH 0
 PUSH 40
 JMP SHORT IRQB ; Acknow ledge PIC2
IRQ9:
 PUSH 0
 PUSH 41
 JMP SHORT IRQB
IRQ10:
 PUSH 0
 PUSH 42
 JMP SHORT IRQB
IRQ11:
 PUSH 0
 PUSH 43
 JMP SHORT IRQB
IRQ12:
 PUSH 0
 PUSH 44
 JMP SHORT IRQB
IRQ13:
 PUSH 0
 PUSH 45
 JMP SHORT IRQB
IRQ14:
 PUSH 0
 PUSH 46
 JMP SHORT IRQB
IRQ15:
 PUSH 0
 PUSH 47
IRQB:
 PUSH EAX ; Acknow ledge PIC2
 MOV AL,20h
 OUT 0A0h,AL
 POP EAX
IRQ:
 PUSH EAX ; Acknow ledge PIC1
 MOV AL,20h
 OUT 20h,AL
 POP EAX

Interrupt PROC
 PUSHAD ; Save a ll registers
 PUSH DS
 PUSH ES
 PUSH FS
 PUSH GS
 PUSH SS
 STR AX ; Includ ing faulting task

 PUSH EAX
 PUSH CS
 POP DS ; Point to code, for strings

 MOV AX,OFFSET Screen ; Point to screen
 MOV ES,EAX
 MOV ESI,OFFSET RegNames ; Point to strings
 MOV EDI,[ESP+56] ; Interr upt number on stack here
; SHL EDI,1 ; Turn into screen address
; INC BYTE PTR ES:[EDI] ; One o f these!
 MOV AX,OFFSET MSDOSData ; Point to data
 MOV FS,EAX
 MOV FS:[TaskLock],1 ; Stop t ask switching!
 STI
 MOV AH,4Fh ; White- on-red!
 AND EDI,NOT 0Fh ; Positi on to tab-stop
 ADD EDI,160 ; On nex t row
DumpRegs:
 CLD ; Work f orwards
 MOV ECX,5 ; Five c haracters of text
NameLoop:
 LODSB ; Get ch aracter
 STOSW ; Store attrib+char
 LOOP NameLoop ; For ea ch character
 LODSB ; Get si ze of register
 MOV CL,AL ; Into c ounter
 LODSB ; Get po sition on stack
 MOVZX EBX,AL ; Into o ffset
 LODSB ; Get ri d of position in TSS
 MOV EDX,[ESP+EBX] ; Get va lue from stack
 CALL Hex ; Displa y as hex
NoData:
 ADD EDI,160 ; Start new row
 AND EDI,NOT 0Fh ; At tab -stop
 CMP ESI,OFFSET EndRegs ; End of registers?
 JB DumpRegs ; No, so continue
 CMP BYTE PTR [ESP+56],32 ; Was it a hardware int?
 JAE SHORT EndInt ; Yes, s o continue
IntDOS:
 CLI ; No, so back to DOS!
 DB 0EAh ; JMP FA R ProtCode:BackToDOS
 DD OFFSET BackToDOS,OFFSET ProtCod e
EndInt:
 ADD ESP,8 ; Ignore saved TR and SS
 POP GS ; Pop ev erything else
 POP FS
 POP ES
 POP DS
 POPAD
 ADD ESP,8 ; Ignore int number and error code
 IRETD ; And re turn
Interrupt ENDP

InterTask PROC
 MOV AX,OFFSET MSDOSData ; Point to data
 MOV DS,EAX

 ASSUME DS:Data ; And te ll assembler

 MOV [TaskLock],1 ; Stop t ask switching!

 MOV AX,OFFSET Screen ; Point to screen
 MOV ES,EAX
 ASSUME ES:Nothing

 MOV AX,OFFSET GDTData ; Point to GDT
 MOV FS,EAX
 ASSUME FS:GDT

 STR BX ; Get cu rrent task
 MOV FS:[BX.DescType],Present+Memory ; Turn it into memory
 MOV GS,EBX ; Load i nto segment reg

 ASSUME GS:TSS ; And te ll (fool) assembler

 MOVZX EBX,GS:[BackLink] ; Get Ba ckLink TSS
 CMP EBX,0
 JE SHORT NotLinked
 MOV FS:[EBX.DescType],Present+Memor y+Writable ; Make writable
 MOV GS,EBX ; Load i nto segment reg
 MOV GS:[BackLink],BX ; Store this TR somewhere
NotLinked:
 PUSH CS ; Point to strings
 POP DS
 MOV ESI,OFFSET RegNames ; Point to strings
 MOV EDI,[ESP] ; Positi on screen pointer
 SHL EDI,1
 AND EDI,NOT 0Fh
 INC BYTE PTR ES:[EDI]
 ADD EDI,80*2
Name2Loop:
 CLD ; Work f orwards
 MOV AH,4Fh ; White- on-red!
 MOV ECX,5 ; Five c haracters per string
CharLoop:
 LODSB ; Get ch aracter
 STOSW ; Store character+attribute
 LOOP CharLoop ; Once f or each char
 LODSB ; Get le ngth of data
 MOV CL,AL ; Into c ounter
 LODSB ; Ignore position on stack
 LODSB ; Get po sition in TSS
 MOVZX EBX,AL ; Into I ndex register
 MOV EDX,GS:[EBX] ; Get va lue
 CMP AL,8 ; Is it int number?
 JA SHORT HexIt ; No, so hex it
 CMP AL,0 ; Is it task number?
 JE SHORT HexIt ; Yes, s o hex it
 MOV EDX,[ESP+EBX-4] ; No, so fish off stack
HexIt:
 CALL Hex ; Displa y it
 ADD EDI,160 ; Go to next row
 AND EDI,NOT 0Fh ; To pre vious tab-stop
 CMP ESI,OFFSET EndTSSRegs ; End of registers?
 JB Name2Loop ; Not ye t

 JMP IntDOS ; Yes, s o leave
InterTask ENDP

Hex PROC NEAR
 STD ; Work b ackwards
 LEA EDI,[EDI+ECX*2-2] ; Point to end of number
HexLoop:
 MOV AL,DL ; Get lo west byte
 AND AL,0Fh ; Isolat e low nybble
 ADD AL,'0' ; Turn i nto ASCII
 CMP AL,'9' ; Too fa r?

 JBE SHORT LoopHex ; No
 ADD AL,'A'-'9'-1 ; Yes, s o turn into hex
LoopHex:
 STOSW ; Store
 SHR EDX,4 ; Shift in next nybble
 LOOP HexLoop ; Loop
 RET ; And re turn
Hex ENDP

RegNames DB 'Int: ',2,56,4 ; Name,w idth,stack pos,TSS pos
 DB 'EAX: ',8,52,40
 DB 'EBX: ',8,40,52
 DB 'ECX: ',8,48,44
 DB 'EDX: ',8,44,48
 DB 'ESI: ',8,28,64
 DB 'EDI: ',8,24,68
 DB 'ESP: ',8,36,56
 DB 'EBP: ',8,32,60
 DB 'EIP: ',8,64,32
 DB 'Flag:',8,72,36
 DB 'CS: ',4,68,76
 DB 'DS: ',4,20,84
 DB 'ES: ',4,16,72
 DB 'FS: ',4,12,88
 DB 'GS: ',4,8,92
 DB 'SS: ',4,4,80
 DB 'Task:',4,0,0
 DB 'Err: ',4,60,8
EndRegs EQU $
 DB 'LDT: ',4,-1,96
EndTSSRegs EQU $

IntLimit EQU $-1

IntSeg ENDS

 END Entry

