Many people have posted asking for some fool to giv
mode programming, to allow everyone to laugh at the

Introduction

| wrote my first protected mode program many years
idiosyncracies of the Intel architecture. | still r
anyone, because there's nothing like learning from
spirit of sharing knowledge, | offer my first progr
edification and amusement. | am not saying it is go
couldn't be done better, but since | was more inter
work than in doing it the best way, | believe this
straightforward.

Requirements

| first had to work out what features | wanted to t
was | thought I'd try everything! This included:

- Accessing extended memory

- Multiple tasks

- Local descriptor tables

- Multiple privilege levels

- 16 and 32-bit code

- Revectoring hardware interrupts

- Direct hardware access (A20, PIC, timer, keyb

- Paging (although | dropped this for this prog

So this program is designed to start up multiple ta
thing - bounce a ball in its own window. If | could
would seemingly all be able to bounce together.

High Level Design

To make it easier on myself, | decided to effective
possible, letting the assembler do most of the work
a good idea, since | could have a look at the actua
and make sure | was telling it what | thought | was
at this stage were the '386 Intel manual, and Borla
to have a look to the disassembled code. | even fou
disassembler!

So | wanted the program to do the following steps:
- Set up core system tables in preparation of th
- Switch to protected mode
- Set up rest of system tables (esp. exception h
- Set up each user task
- Twiddle thumbs while tasks ran, until user pre
- Return to real mode
- Restore system to DOS state

This last turned out to be invaluable, since having
every time to get out of my program wasted a lot of
5 seconds running!). As it was, the system rebooted
enough times until | got the exception handlers rig

Lessons | Learned

To help any other novice protected-mode programmers

the following:

1) Spend the time to set up exception handlers. It
mistake that merely dumping all of the register
(in hex) is invaluable for not only finding whic
problem, but also in finding out what error the
If you don't do this step, the most likely scena
will result in another, which will resultin a d
will result in another exception, which will shu
reboot the computer.

2) Examine the listing file the assembler can produ

e an example of protected
ir code.

ago to learn all of the
ecommend this approach to
your mistakes! But in the
am to all for

od code, nor that it

ested in getting it to

code is relatively

ry - and being the fool |

oard, screen etc.)
ram)

sks, that each do the same
get it fast enough, they

ly hard code as much as

. This turned out to be

| assembled constants

I My most invaluable tools
nd's TD - not to debug, but
nd a bug in Borland's

e switch to protected mode
andlers)

ssed <Esc>

to reboot the computer
time (30 seconds reboot,
itself more than

ht!

out there, | can recommend

is so easy to make a
contents onto the screen

h instruction caused the
'386 is complaining about.
rio is that any exception
ouble exception, which

t down the CPU, which will

ce. Make sure the assembler

and you both think you're talking about the same
(unfortunately DOS's DEBUG only accepts 8086 ins
the assembled hex bytes, and see if the debugger
instruction as you've typed. (Even this isn't pe

be assuming you're in 16-bit mode for a 32-bit i
wierd results! It also may have bugs itself!)

Idiosyncracies | Discovered

1) Protected mode far jumps can't be assembled. Bor

be convinced to assemble JMP OFFSET ProtMode:OFF

dummy these up with DBs and DWs.

2) The '386 does not save a task's LDT into its TSS
LDT changes, you either have to update the TSS m
switching.

3) The Trace bit in the TSS is not automatically sw
is entered. This means that if tasks are still b
debugger, the T bit needs to be switched off man
re-entering the debugger!

Tools | Used

| have assembled this program with three different
| don't own MASM, but | do not believe | have done
If anyone has any trouble, contact me and | will tr

The Code

| have had trouble attaching text to News articles
the result. | also do not have the facilities to pu
anyone wants to mail me I'll deliver the complete s
can do it for me. For now | will post the code in |
(~300 lines per part), and | will thread them off t
doesn't clutter the Newsgroup.

Part 1 - Definitions

Part 2 - Real mode entry point

Part 3 - Protected mode entry point

Part 4 - User code (small)

Part 5 - Interrupt and exception handlers (large)

WARNINGS (One legal, one moral)

As a professional programmer, | identify with my co

not how | do things now, but it is still mine. | do

to others so that they can learn, and you can exper
content, but DO NOT USE ANY PART of this code in ne
commercial or otherwise.

Finally, this code is the ultimate in unfriendlines

whole machine belongs to it - including ALL RAM. Th
be run on a vanilla system - no HIMEM.SYS, no memor
no disk-cache programs! Your memory WILL be written

John Burger

thing! Use a debugger
tructions) and type in
thinks it's the same
rfect - the debugger may
nstruction, producing

land's TASM (anyway) can't
SET ProtProc. So | had to

on a task switch. So if
anually, or prevent task

itched off when the task
eing switched behind the
ually to prevent

version of Borland's TASM.
anything Borland specific.
y to fix it.

so that everyone can decode
titin an ftp site. If

ource to them so that they
ong-hand, in five parts

his message so that it

de. This may be old, and
n't mind showing this code
iment to your heart's

w software, whether

s! It assumes that the

is means that it should
y managers, and DEFINITELY
over!

* * *

; Copyright (c) John Burger, 1990-1995. All rights

; This code has been placed in the public domain by
; purposes only - to demonstrate various techniques
; Intel 80386 et. al. in protected mode. It is avai

; experiment with, NOT to include in other software

; otherwise.

1

; This program switches into protected mode (on a'
; that all do the same thing in different windows,
; <Esc> key is pressed and released.

; Minimum system: '386 with 2Mb RAM (to test A20 li

; Standard A20 line

;. If A20 line non-standard, or <2Mb RAM available,

; RAM rather than extended RAM.

; ¥ WARNING ***

; System should be 'vanilla: No HIMEM.SYS, memory
; This program accesses the hardware directly, and

; manager by writing all over it!

; Experiments to try:

; - Various values for WindowWidth and WindowHeigh
; 0,0 maximises number of tasks;

; - Various values for SecTick to slow down and sp

; Below 19 and above 65535 will cause compiler

; Higher values may cause GP faults!

; - Insert an INT 3 anywhere in ProtSeg, BallCode

; - Insert any INT in the above segments, AFTER th

; Look for *** in ProtSeg

; - Modify code to generate various exceptions:

; Crash the stack (MOV SP,1; PUSH AX)

;. Access illegal memory (INC BYTE PTR ES:[OFFF
; Invalid op-codes (LOCK XOR AX,AX)

; Enable single-step debugging (PUSHF; POP AX;
; The single-step debug handler simply waits

; <Enter> or <Space>, then returns. To indic

; "dingle"<tm> in the top right corner of th

; stops tracing.

WARN ; Listen to

.386P ; Going to

; Stack segment, reserved by DOS but used in protec

StackSeg SEGMENT STACK PARA USE32 ; DOS stack
DB 100 DUP ('STACK') ; (Used to

StackTop EQU $: For 16 bi

StackSeg ENDS

StackSize EQU 1024 ; For 32 bi

; Multitasking constants:

; Reduce SecTick for slower machines.

; Note certain values may cause errors.

; Change WindowWidth and WindowHeight to change n
; Note certain values may cause errors.

; Change BounceTime to slow down the bouncing.

; Change Ball to change character that bounces.

SecTick EQU 1000 Task swit

* * * * *

reserved.

John Burger for example
for programming the
lable for other people to

, whether commercial or

386+), starts many tasks
and continues until the
ne)

modify the code to use DOS

manager or disk cache.
will TRASH any memory-

t:

eed up operation:
errors.

or IntCode.
ey've been set up.

FFFFh]

OR AX,100h; PUSH AX; POPF)
for the user to press

ate waiting, it uses a

e screen. Pressing <Enter>

every assembler complaint!

be doing 386 Prot Mode inst

ted mode also.

ID memory)
t code

t stacks

umber of windows.

ches per second

WindowWidth EQU 4 ; Width of a window

WindowHeight EQU 3 ; Height of a window
BounceTime EQU 1 ; Time dela y before moving
Ball EQU 1 : Character to bounce
System constants. These are defined by the hardwa re.

ClockFreq EQU 1193200 ; Timer O f requency

; Constants in Granular byte of descriptor table en try

PageGran EQU 80h
ByteGran EQU 00h
More64K EQU 40h
Less64K EQU 00h
LargeAddr EQU 40h
SmallAddr EQU 00h
Available EQU 10h

LimitHi EQU OFh

; Constants in Type byte of descriptor table entry
Present EQU 80h
NotPresent EQU 00h
DPL EQU 60h
PrivilegeO EQU 00h
Privilegel EQU 20h
Privilege2 EQU 40h
Privilege3 EQU 60h
Memory EQU 10h
System EQU 00h
Execable EQU 08h
NotExecable EQU 00h
Gate386 EQU 08h
Gate286 EQU 00h
ExpandDown EQU 04h
ExpandUp EQU 00h
Conform EQU 04h
NonConform EQU 00h
Writable EQU 02h
NotWritable EQU 00h
Readable EQU 02h
NotReadable EQU 00h
Accessed EQU 01h
NotAccessed EQU 00h

; Bit indicating descriptor is in LDT
LocalDT EQU 04h

; Descriptor types
AvailTSS EQU 1
LDT EQU 2
BusyBit EQU 2
BusyTSS EQU 3
CallGate EQU 4
TaskGate EQU 5
IntGate EQU 6
TrapGate EQU 7

Int386 EQU Present+Gate386+IntGate ; Dis able ints within routine
Trap386 EQU Present+Gate386+TrapGate ; Kee p ints
Task386 EQU Present+TaskGate : Not Gate386 - not defined!

1

; System structures. These are defined by the hardw are.

; Descriptor structure
Descriptor STRUC
Limitto DW ?
BaseLo DW ?
BaseMid DB ?
DescType DB ?
DescGran DB ?
BaseHi DB ?
Descriptor ENDS

; Gate structure
Gate STRUC
OffsetLo DW ?
Selector DW ?
Count DB ?
GateType DB ?
OffsetHi DW ?
Gate ENDS

; Pseudo-descriptor table pointer (GDT/IDT)
DTPtr STRUC ; Descriptor Table Po
Limit DW ?

Base DD ?

DTPtr ENDS

inter

; System segments. The structure of these is define

; Interrupt Descriptor Table.

; Intel has reserved the first 32 interrupts, and g

; functions. Note that hardware vectors have been m

; Since it is such a small program (ha!), the entir

; here. Note that the descriptor fields are simply

; Note also that four faults are represented by the

; recommended by Intel - Debug, Double, BadTSS, and
; guarantee that a valid state will be available to

; fault.

IDT SEGMENT PARA USE16
Divide Gate <OFFSET Dividelnt,OFFSET IntCod
;Debug Gate <0,0FFSET DebugTSS,0,Task386,0
Debug Gate <OFFSET Debugint,OFFSET IntCode
NMI Gate <OFFSET NMIInt,OFFSET IntCode,0
Break Gate <OFFSET BreakInt,OFFSET IntCode
Overflow Gate <OFFSET Overint,OFFSET IntCode,
OutBound Gate <OFFSET BoundInt,OFFSET IntCode
InvalidOp Gate <OFFSET Oplint,OFFSET IntCode,0,
No387 Gate <OFFSET No387Int,OFFSET IntCode
Double Gate <0,0FFSET DoubleTSS,0,Task386,0
Over387 Gate <OFFSET Over387Int,OFFSET IntCo
BadTSS Gate <0,0FFSET BadTSSTSS,0,Task386,0
NoSegment Gate <OFFSET NoSegInt,OFFSET IntCode
BadStack Gate <0,0FFSET StackTSS,0,Task386,0>
General Gate <OFFSET GenlInt,OFFSET IntCode,0
PageFault Gate <OFFSET Pagelnt,OFFSET IntCode,

Gate <OFFSET Int15,0FFSET IntCode,0,
Bad387 Gate <OFFSET Bad387Int,OFFSET IntCod

Gate <OFFSET Int17,0FFSET IntCode,0,

Gate <OFFSET Int18,0FFSET IntCode,0,

Gate <OFFSET Int19,0FFSET IntCode,0,

Gate <OFFSET Int20,0FFSET IntCode,0,

Gate <OFFSET Int21,0FFSET IntCode,0,

Gate <OFFSET Int22,0FFSET IntCode,0,

Gate <OFFSET Int23,0FFSET IntCode,0,

Gate <OFFSET Int24,0FFSET IntCode,0,

Gate <OFFSET Int25,0FFSET IntCode,0,

Gate <OFFSET Int26,0FFSET IntCode,0,

d by the hardware.

iven the first half of them
oved!

e table can be hard-coded
offsets into the GDT.

ir own tasks, as

BadStack. These all

the system to process the

e,0,Trap386,0>

> ; Debug as separate task?
,0,Trap386,0>

,Trap386,0>

,0,Trap386,0>
0,Trap386,0>

,0,Trap386,0>

Trap386,0>

,0,Trap386,0>

>

de,0,Trap386,0>
>
,0,Trap386,0>

,Trap386,0>
0,Trap386,0>
Trap386,0>
e,0,Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>
Trap386,0>

Gate <OFFSET Int27,0FFSET IntCode,0, Trap386,0>

Gate <OFFSET Int28,0FFSET IntCode,0, Trap386,0>
Gate <OFFSET Int29,0FFSET IntCode,0, Trap386,0>
Gate <OFFSET Int30,0FFSET IntCode,0, Trap386,0>
Gate <OFFSET Int31,0FFSET IntCode,0, Trap386,0>
Timer Gate <OFFSET TimerInt,OFFSET IntCode ,0,Int386,0>
Keyboard Gate <OFFSET KeyInt, OFFSET IntCode,0 ,Int386,0>
Slave Gate <OFFSET Slavelnt,OFFSET IntCode ,0,Int386,0>
COM2 Gate <OFFSET COM2Int,OFFSET IntCode, 0,Int386,0>
COM1 Gate <OFFSET COM1Int,OFFSET IntCode, 0,Int386,0>
Gate <OFFSET IRQ5,0FFSET IntCode,0,l nt386,0>
Gate <OFFSET IRQ6,0FFSET IntCode,0,l nt386,0>
Printer Gate <OFFSET Printint, OFFSET IntCode ,0,Int386,0>
Gate <OFFSET IRQ8,0FFSET IntCode,0,l nt386,0>
Gate <OFFSET IRQ9,0FFSET IntCode,0,l nt386,0>
Gate <OFFSET IRQ10,0FFSET IntCode,0, Int386,0>
Gate <OFFSET IRQ11,0FFSET IntCode,0, Int386,0>
Gate <OFFSET IRQ12,0FFSET IntCode,0, Int386,0>
Gate <OFFSET IRQ13,0FFSET IntCode,0, Int386,0>
Gate <OFFSET IRQ14,0FFSET IntCode,0, Int386,0>
Gate <OFFSET IRQ15,0FFSET IntCode,0, Int386,0>
IDTLimit EQU $-1
IDT ENDS

; Global Descriptor Table.

; None of the Base fields can be filled in, as it i s not know where the code
; will load into memory.

; Only the first entry is reserved by Intel. This i s the unused descriptor to
; allow the system to detect null pointer reference s.

; The others are arbitrary.

; The two MSDOS ones are for the return to DOS - to reset the descriptors back
; to valid values.

; GDTData and IDTData are aliases for the GDT and | DT respectively.

; ProtCode is the protected-mode code segment for i ntialisation and wrapup.

; IntCode is the protected-mode code segment for in terrupt code. (32-bit)

; Screen is the CGA/EGA/VGA/SVGA text screen.

; MainTask is the task state segment of the executi ve.

; MainStack is the level O stack for the main task.

; StackTSS is the task state segment for a stack fa ult.

; TSSStack is the stack for the stack fault task.

; BadTSSTSS is the task state segment for a TSS fau It.

; BTStack is the stack for the BadTSS fault task.

; DoubleTSS is the task state segment for a double fault.

; DblStack is the stack for the double fault task.

; DebugTSS is the task state segment for the debug trap.

; DbgStack is the stack for the debug trap task.

; More is the room for all of the TSSs and LDTs of the user tasks.

EBDT SEGMENT PARA USE16
Descriptor<>

MSDOSCode Descriptor<OFFFFh,?,?,Present+Memory+Exec able+Readable,ByteGran,0>
MSDOSData Descriptor<OFFFFh,?,?,Present+Memory+Writ able,ByteGran,0>

GDTData Descriptor<GDTLimit,?,?,Present+Memory+Wr itable,ByteGran,0>

IDTData Descriptor<IDTLimit,?,?,Present+Memory+Wr itable,ByteGran,0>

ProtCode Descriptor<ProtLimit,?,?,Present+Memory+E xecable+Readable,ByteGran,0>
IntCode Descriptor<IntLimit,?,?,Present+Memory+Ex ecable+Readable,ByteGran+LargeAddr,0>
Screen Descriptor<3999,8000h,0Bh,Present+Privile ge3+Memory+Writable,ByteGran,0>
StackTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>

TSSStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
BadTSSTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>

BTStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
DoubleTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>

DbiStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>
DebugTSS Descriptor<TSSLimit,?,?,System+Gate386+Av ailTSS,ByteGran,0>

DbgStack Descriptor<StackTop-1,?,?,Present+Memory+ Writable,ByteGran+More64K,0>

MainTask Descriptor<TSSLimit,?,?,Present+System+Ga
MainStack Descriptor<StackTop-1,?,?,Present+Memory+
UserTasks EQU $

ORG OFFFFh
GDTLimit EQU $
GDT ENDS

; Task State Segment.
; The structure is defined by Intel. Note multiple

lI'SS SEGMENT PARA USE16
BackLink DW 0

DW 0
ESPO DD 0
SS0 DW 0
DW 0
ESP1 DD 0
SS1 DW 0
DW 0
ESP2 DD 0
SS2 DW 0
DW 0
PDBR DD 0 ; Page Dire

EIPReg DD ?
EFlags DD ?
EAXReg DD
ECXReg DD
EDXReg DD
EBXReg DD
ESPReg DD
EBPReg DD
ESIReg DD ?
EDIReg DD
ESSeg DW
DW 0
CSSeg DW ?
DW 0
SSSeg DW ?
DwW 0
DSSeg DW ?
DwW 0
FSSeg DW ?
DW 0
GSSeg DW ?
DW 0
LDTR DW 0 : Local Des
DwW 0
Tracing DW 0
IOMapBase DW TSSSize
TSSSize EQU $-BackLink
TSSLimit EQU TSSSize-1
TSS ENDS

NN))) N

) N

; Debugger TSS

TSSDebug SEGMENT PARA USE16
DB TSSSize DUP (?)

TSSDebug ENDS

: Double TSS

TSSDouble SEGMENT PARA USE16
DB TSSSize DUP (?)

TSSDouble ENDS

: Bad TSS TSS

TSSTSS SEGMENT PARA USE16
DB TSSSize DUP (?)

TSSTSS ENDS

te386+AvailTSS,ByteGran,0>
Writable,ByteGran+More64K,0>

TSSs will be created.

ctory Base Register

criptor Table Register

; Bad Stack TSS

BadStackTSS SEGMENT PARA USE16
DB TSSSize DUP (?)

BadStackTSS ENDS

; Local Descriptor Table.

; Each user gets their own LDT, with a descriptor f
; StackO: level O stack

; Stack3: level 3 stack (levels 1 and 2 not used

; TaskCode: user code segment - all user code is i
; TaskData: user data segment - all user data is i

TaskLDT SEGMENT PARA USE16
StackO Descriptor<>

Stack3 Descriptor<>

TaskCode Descriptor<>

TaskData Descriptor<>

LDTLimit EQU $-1

TaskLDT ENDS

; DOS/Protected mode data
Data SEGMENT PARA USE16

or:

n the same segment
n a private segment

OldIDT DTPtr <> ; Old (DOS) IDT value

GDTPtr DTPtr <GDTLimit,?> ; GDT point er constructed here

IDTPtr DTPtr <IDTLimit,?> ; IDT point er constructed here

Corner DW 0101h ; The start ing window corner

TaskJump LABEL PWORD ; Thisist he task jump address
DD 0 ; The offse t part is unused

NextTask DW 0 ; The next task to run

LastTask DW 0 ; The last task in the GDT

KeyPress DB 0 ; A one-key buffer!

TaskLock DB 0 ; When 1, d o NOT task switch!

Data ENDS

Burger / John Adriaan (ISE) < u86...@student.canberra.edu.au > wrote:

>The Code

S

>| have had trouble attaching text to News articles
>the result. | also do not have the facilities to p
>anyone wants to mail me I'll deliver the complete
>can do it for me. For now | will post the code in
>(~300 lines per part), and | will thread them off
>doesn't clutter the Newsgroup.

>

>Part 1 - Definitions

>Part 2 - Real mode entry point

>Part 3 - Protected mode entry point

>Part 4 - User code (small)

>Part 5 - Interrupt and exception handlers (large)

I knew | was forgetting something, but | couldn't r
It hit. To assemble the above, get it all into one
Then simply assemble it with

TASM PROTMODE (or whatever assembler you use - n

then

TLINK /3 PROTMODE (or whatever. There are 32-bit

The result is a 69K-odd .EXE, 4K of which is the co

so that everyone can decode
ut it in an ftp site. If

source to them so that they
long-hand, in five parts

this message so that it

emember what it was!
file in the above order.

o DEFINEs needed)

fixups: Borland uses /3)

de, 64K is the GDT!

1

; This is the DOS code segment, that starts and sto

RealSeg SEGMENT PARA USE16

ASSUME CS:RealSeg,DS:Nothing,ES:Nothin

Entry PROC FAR

; Initialise.

’ MOV AH,1 ; Set curso
MOV CX,2607h : to invisi
INT 10h ; using BIO
MOV AX,SEG Data ; Point FS
MOV FS,AX
ASSUME FS:Data ; And tell
MOV AX,SEG GDT ; Point DS
MOV DS,AX
ASSUME DS:GDT ; And tell
SIDT FS:[OIdIDT] ; Store old

; Initialise GDT base entries.

1

XOR EAX,EAX ; Zero

MOV AX,SEG RealSeg :Gets
MOV BX,OFFSET MSDOSCode ; Point
CALL StoreDesc :And u

MOV AX,SEG Data : Getd

MOV BX,OFFSET MSDOSData ; Point
CALL StoreDesc :And u

MOV AX,SEG ProtSeg :Get P
MOV BX,OFFSET ProtCode ; Point
CALL StoreDesc :And u

MOV AX,SEG IntSeg ; Get |

MOV BX,0OFFSET IntCode ; Point
CALL StoreDesc :And u

MOV AX,SEG StackSeg ;Get S
MOV BX,OFFSET MainStack ; Point
CALL StoreDesc ;And u

MOV AX,SEG GDT ; Get G

SHL EAX,4 :Turn

MOV FS:[GDTPtr.Base],EAX ; Store

MOV BX,OFFSET GDTData ; Point

CALL StoreLin ;And u
MOV AX,SEG IDT ; Get |
SHL EAX,4 s turn

MOV FS:[IDTPtr.Base],EAX ; Store
MOV BX,OFFSET IDTData ; Point

CALL StoreLin ;And u
MOV AH,0DFh ; Enabl
CALL GateA20 ; Call
INZ FailA20 ; Didn'

LGDT FS:[GDTPtr] ; Point

ps the program.

g,FS:Nothing,GS:Nothing

r size
ble!
S

to data
assembler
to GDT
assembler

IDT pointer (for recall)

EAX

tart segment into AX
to GDT entry

pdate GDT

ata segment into AX
to GDT entry
pdate GDT

rot code segment into AX
to GDT entry
pdate GDT

nt segment into AX
to GDT entry
pdate GDT

tack segment into AX
to GDT entry
pdate GDT

DT segment into AX
into linear address
into GDT pointer

to GDT entry

pdate GDT

DT segment into AX
into linear address
into IDT pointer

to GDT entry

pdate GDT

e A20 line
Gate routine
t work! Bomb!
to GDT

; Getting the assembler to assemble a protected mod

LIDT

MOV
OR
MOV

FS:[IDTPtr] ; Point

EAX,CRO ; Getc
EAX,1 : Set P
CRO,EAX : NOW |

; segment and offset is next to impossible. So just

DB
Dw

OEAh ; JMP F

OFFSET ProtMode,OFFSET ProtCode

; Jump back here to return to real mode.

BackReal:

XOR

LLDT
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
AND

MOV

AX,AX :No Loc
AX

AX,OFFSET MSDOSData ; Reload
DS,AX ; to poi
ES,AX ; segmen
FS,AX

GS,AX

SS,AX

SP,0FFFEh ;Just t
EAX,CRO : Getcu
EAX,NOT 1 ; Reset
CRO,EAX ; Back i

; Now the trick is getting the assembler to assembl
; next instruction! It always optimises it out! So

DB
Dw

RealMode:

1

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

ASSUME DS:Data,ES:Nothing,FS:Nothing,G

LIDT

OEAh
OFFSET RealMode,SEG RealSeg ; J

AX,SEG StackSeg
SS,AX
SP,OFFSET StackTop ; SP too
AX,SEG Data : Re-rel
DS,AX vinrea

ES,AX

FS,AX

GS,AX

; Put st

[OIdIDT] ; Restor

Restore timer back to 18.2 times a second

MOV
ouT
JMP

ouT

AL,0 ; Diviso
40h,AL ; Low by
$+2 ; (tap f
40h,AL ; High b

Restore Priority Interrupt Controllers (PICs) to

MOV
ouT
ouT

MOV
ouT
MOV
ouT

MOV
ouT

AL,11h : Initia
20h,AL
0AOh,AL

AL,08h
21h,AL
AL,70h
0A1h,AL

;PICL @

;PIC2 @

AL,00000100b
21h,AL

;PIC1h

to IDT

urrent CRO

rotected Mode bit

N PROTECTED MODE!

e jump with the correct
hard-code it!

AR ProtCode:ProtMode

al Descriptor Table
ALL segment registers

nt them to DOS-type
ts

emporary, | promise!
rrent CRO

protected mode bit
n real mode

e a FAR jump to the
hard-code it again.

MP FAR RealSeg:RealMode
ack back

oad all segment registers
| mode

S:Nothing ; Tell assembler
e IDT pointer

r for ssllllloooooooww!
te

oot)

yte

DOS expectations

lise PICs

Int 08h

Int 70h

as slave on IRQ2

MOV AL,02h ; PIC2i
ouT 0Alh,AL

MOV AL,01h ; 80x86
ouT 21h,AL
ouT OAlh,AL
MOV AL,00h : Enable
ouT 21h,AL
ouT OAlh,AL
MOV AH,0DDh : Restor
CALL GateA20
FailA20:
STI
MOV AH,1 : Restor
MOV CX,0607h
INT 10h
MOV AH,2 ; Cursor
MOV BH,0
MOV DX,1700h
INT 10h
MOV AX,4C00h ; Exitp
INT 21h
Entry ENDP
StoreDesc PROC NEAR
SHL EAX,4 ; Turn
StoreLin:
MOV [BX.BaseLo],AX ; Store
SHR EAX,16 : Geth
MOV [BX.BaseMid],AL ;And s
RET

StoreDesc ENDP

GateA20 PROC NEAR

CLI ; Criti

CALL Wait8042 ; Wait

JNZ SHORT Dead8042 ; Nope,

MOV AL,0D1h ; Progr

ouT 64h,AL ;(toc

CALL Wait8042 ; Wait

JNZ SHORT Dead8042 ; Nope,

MOV AL,AH ; Value

ouT 60h,AL ;(tod
Wait8042:

XOR CX,CX : Plent
Loop8042:

IN AL,64h :Getc

AND AL,2 ; Busy?

LOOPNZ Loop8042 ;Yep,
Dead8042:

RET :Nolo

GateA20 ENDP

RealSeg ENDS

s slaved to IRQ2

mode

all interrupts

e A20 line

e cursor

to bottom of screen

rogram

into linear address

into GDT
igh part of EAX
tore

cal code!

for it to be ready

so dead

am data port

ontrol port)

to accept command
so dead

to program

ata port)

y long enough!
urrent state
so keep waiting

nger.

; Protected mode code segment (still USE16). Used o
; protected mode, to initialise all tasks, then aga

i:’rotSeg SEGMENT PARA USE16

ASSUME CS:ProtSeg,DS:Nothing,ES:Nothin

ProtMode:

CLI ; Not re

MOV AX,OFFSET MainStack ; Reload
MOV SS,AX

MOV ESP,OFFSET StackTop ; Availa

PUSH LARGE 2 ; All sp
POPFD ;Infla

; Reprogram Peripheral Interrupt Controllers (PICs)
; way of the Intel-reserved interrupts.

MOV AL,11h ; Initia
ouT 20h,AL
ouT 0AOh,AL

MOV AL,20h ;PICL@
ouT 21h,AL
MOV AL,28h ;PIC2 @

ouT 0Alh,AL

MOV AL,00000100b :PIC1h
ouT 21h,AL

MOV AL,02h i PIC2i
ouT 0A1h,AL

MOV AL,1 ; 80x86

ouT 21h,AL

ouT 0A1h,AL

MOV AL,0 : Enable
ouT 21h,AL

ouT 0Alh,AL

; Reprogram timer to speed up task switching.

MOV AX,ClockFreg/SecTick ; Diviso

ouT 40h,AL ; Low by

JMP $+2 ; (tap f

MOV AL,AH ; High b

ouT 40h,AL

MOV AX,OFFSET GDTData ; Point
MOV DS,AX

ASSUME DS:GDT ; And te

MOV AX,OFFSET MSDOSData

MOV FS,AX
ASSUME FS:Data

MOV AX,OFFSET Screen
MOV ES,AX
MOV GS,AX

n initial start in
in to return to DOS.

g,FS:Nothing,GS:Nothing

ady yet!

SS under protected mode
ble!

ecial bits zero

gs register

to move them out of the

lise PICs

20h

28h

as slave on IRQ2

s slaved on IRQ2

mode

all interrupts

r
te
oot)
yte

to desired segments

Il assembler!

MOV
MOV

MOV
XOR
MOV
REP

STI

FS:[TaskLock],1 ; Disabl
FS:[LastTask],OFFSET MainTask ;

AX,0700h+"" ; Grey s

DI,DI : Screen

CX,2000 ; 2000 s

STOSW : Clear
:You ca

; Initialise remaining TSSs, in case a fault happen

1

MOV EAX,SEG TSS
SHL EAX,4
MOV BX,OFFSET MainTask
MOV CX,OFFSET TSSSize
MOV DL,Present+System+Gate386+Avail
MOV DH,ByteGran
CALL AssignMem
LTR BX : Poin

; Use memory above 1 Meg for TSS stacks
MOV ESI,110000h ; Poin
MOV EAX,SEG TSSDebug ; Init
MOV BX,OFFSET DebugTSS ; Poin
MOV EBP,OFFSET Debugint : Star
CALL AssignTSS
MOV EAX,SEG TSSDouble ; Init
MOV BX,OFFSET DoubleTSS ; Poin
MOV EBP,OFFSET DoubleInt ; Star
CALL AssignTSS
MOV EAX,SEG TSSTSS ; Init
MOV BX,OFFSET BadTSSTSS ; Poin
MOV EBP,OFFSET BadTSSInt ; Star
CALL AssignTSS
MOV EAX,SEG BadStackTSS ; Init
MOV BX,OFFSET StackTSS ; Poin
MOV EBP,OFFSET Stackint ; Star
CALL AssignTSS
MOV FS:[TaskLock],0 ; Can

; ¥** Insert any

INT after this point ***

; (before this point | don't guarantee anything!)

: Now create each task

MOV

MOV
TaskLoop:

PUSH

; Allocate LDT
MOV
CALL
MOV
MOV
CALL

; Initialise LDT
PUSH

BX,OFFSET UserTasks-SIZE Descri
CX,(80/(WindowWidth+2))*(25/(Wi

CX

CX,OFFSET LDTLimit ;Lo
GetMem i Al
DL,Present+Memory+Writable ; As
DH,ByteGran

AssignMem : Mo

DS

e task switching for now
Point to current last task

pace
pointer
creen locations
screen

n start now!

s!

TSS

t Task Register to it

t to memory above 1Mb+64K

ialise Debug TSS
t to descriptor table entry
ting instruction to use

ialise Double TSS
t to descriptor table entry
ting instruction to use

ialise BadTSS TSS
t to descriptor table entry
ting instruction to use

ialise BadStack TSS
t to descriptor table entry
ting instruction to use

now enable task switching

ptor
ndowHeight+2)) ; No. tasks

cal descriptor table size
locate memory
data segment

dify GDT

PUSH BX ; Sa
MOV DS,BX ; Po
MOV BX,-SIZE Descriptor

; Allocate StackO

MOV CX,StackSize-1 : Si

CALL GetMem ; Ge

MOV DL,Present+Memory+Writable ; As
MOV DH,ByteGran+More64k

CALL AssignMem : Mo
; Allocate Stack3

MOV CX,StackSize-1 ; Si

CALL GetMem : Ge

MOV DL,Present+Privilege3+Memory+Wr
MOV DH,ByteGran+More64k

CALL AssignMem ; Mo
; Point to user code
MOV EAX,SEG BallCode :Co
SHL EAX,4 i As
ADD BX,SIZE Descriptor : Ne

MOV CX,OFFSET CodeLimit ; By
MOV DL,Present+Privilege3+Memory+Ex
MOV DH,ByteGran+LargeAddr

CALL AssignMem ; Mo

; Allocate user data
MOV CX,OFFSET DataLimit ; Si
CALL GetMem ; Ge

MOV DL,Present+Privilege3+Memory+Wr
MOV DH,ByteGran

CALL AssignMem : Mo
POP BX ' Re

POP DS

ASSUME DS:GDT : So

MOV [BX.DescType],Present+Privilege

; Initialise TaskData to maintain uniqueness

; To pre-initialise data, access is needed to the t

; the window. To get this access requires loading a
; descriptor for this segment is in the LDT for the

; point the LDT for the Main task to this LDT, load

; and access the variables. BUT. The LDTR is NOT au

; task switch, and the LDT field in MainTask's TSS
; LDT. So if any task switches happen in this criti
; GP fault for ES will occur (points to a non-exist

CLI ;IN

LLDT BX ; Us

MOV AX,OFFSET TaskData+LocalDT ; Po
MOV ES,AX ; Wi
ASSUME ES:BallData :An
MOV AX,FS:[Corner] : Ge
MOV ES:[Top],AH ; St
MOV ES:[Left],AL ; An
XOR AX,AX : Do
MOV ES,AX Wi
LLDT AX ;an

STI ;LD

ADD BYTE PTR FS:[Corner],WindowWidth+2
CMP BYTE PTR FS:[Corner],80-WindowWidth

ve GDT pointer
intto LDT

ze of stack
t StackO
data segment

dify LDT

ze of stack
t Stack3
itable ; As data segment

dify LDT

de segment

linear address

xt descriptor

tes of code
ecable+Readable ; As code

dify LDT

ze of data
t TaskData
itable ; As data segment

dify LDT
store GDT pointer
tell assembler

3+System+LDT ; Is now LDT!

wo variables that define
segment register. The
task. So, temporarily

the segment register,
tomatically saved on a

is zero, not this temporary
cal region, on return a
ant LDT!).

Ts can stuff up LDTR

e as LDT for now

int to allocated TaskData
th ES

d tell assembler

t global corner
ore as Top
d Left

n't point to LDT
th ES

ymore!

TR safe again

; Next across
; Too far?

JB SHORT AllocTSS
ADD BYTE PTR FS:[Corner+1],WindowHeight+2
MOV BYTE PTR FS:[Corner],1

AllocTSS:

MOV CX,TSSLimit ; Si

CALL GetMem : Ge

MOV DL,Present+Memory+Writable ; As

MOV DH,ByteGran

CALL AssignMem ; Mo

PUSH DS

PUSH ES

MOV DS,BX ; Po

MOV ES,BX

ASSUME DS:TSS ; An

XOR EAX,EAX ;

XOR DI,DI

MOV CX,TSSSizel4

REP STOSD

MOV [ESPO],StackSize o In

MOV [SSO],OFFSET StackO+LocalDT

MOV [EIPReg],OFFSET BallEntry ; En

MOV [EFlags],3202h ; 10

MOV [ESPReg],StackSize

MOV [CSSeg],OFFSET TaskCode+LocalDT

MOV [SSSeg],OFFSET Stack3+LocalDT+3

MOV [DSSeg],OFFSET TaskData+LocalDT

MOV [LDTR],BX ; LD

SUB [LDTR],SIZE Descriptor ;..

MOV [lOMapBase], TSSSize ; No

POP ES ; Do

POP DS ; Re

ASSUME DS:GDT ; So

MOV [BX.DescType],Present+System+Ga

MOV FS:[LastTask],BX : An

POP CX ; Ge

DEC CX ; An

INZ TaskLoop :Ye

MOV FS:[TaskLock],0 :Ca

AND [MainTask.DescType],NOT Present
TaskEnd:

JMP TaskEnd ; Wa
BackToDOS:

CLI ; Di
; Same assembler problem: protected mode JMP

DB OEAh ; IM

DW OFFSET BackReal, OFFSET MSDOSCod
GetMem PROC NEAR

MOV EAX,ESI ; New

MOVZX ECX,CX ; Size

ADD ESI,LECX ; Allo

AND ESI,NOT OFFh ; (Ens

ADD ESI,100h ; And

ADD BX,SIZE Descriptor : New

RET

GetMem ENDP

AssignMem PROC NEAR

MOV
MOV

[BX.LimitLo],CX ; Low
[BX.BaseLo],AX ; Low

; Not yet
: Yes, so next down
; And start again

zeof a TSS
t memory for TSS
a data segment

dify GDT

int to new segment
d tell (fool) assembler

Zero TSS

itialise Stack0

try point
PL=3!

+3 ; DPL=3 sets CPL
; DPL=3
+3 ; DPL=3
T is current descriptor..
.minus 1
need to worry about I/O

n't point to TSS any more
store GDT pointer
tell assembler

te386+AvailTSS ; Now a TSS!
d can be switched to

t task counter
y left?
s, SO continue

n now start task switching
; But not here!

it for keypress to leave

sable interrupts

P FAR MSDOSCode:BackReal
e

address

to allocate

cated!

ure on 256-byte boundary)
don't overlap!

descriptor too

limit
base

SHR
MOV
MOV
MOV
MOV
RET

EAX,16 ; Get
[BX.BaseMid],AL : Midd
[BX.DescType],DL ; Type
[BX.DescGran],DH : Gran
[BX.BaseHi],AH ; High

AssignMem ENDP

AssignTSS PROC NEAR

SHL EAX,4 ; Make
MOV CX,OFFSET TSSLimit ; Size
MOV DL,Present+Memory+Writable ; Ty
MOV DH,ByteGran
CALL AssignMem ; Assi
PUSH DS : Poin
PUSH ES
MOV DS,BX ; (Not
MOV ES,BX
ASSUME DS:TSS ; Tell
XOR AX,AX . Zero
XOR DI,DI
MOV CX,TSSSize/2
REP STOSW
MOV [EIPReg],EBP ; Star
MOV [EFlags],0202h ; Flag
MOV [ESPReg],OFFSET StackTop ; Stac
MOV [CSSeq],OFFSET IntCode ; Code
MOV [SSSeg],BX ; Stac
ADD [SSSeq],SIZE Descriptor ; (1 p
MOV [lOMapBase],TSSSize ; Don'
POP ES : Don'
POP DS
ASSUME DS:GDT
MOV [BX.DescType],Present+System+Ga
MOV CX,OFFSET StackTop ; Al
CALL GetMem : Ne
MOV DL,Present+Memory+Writable ; Wr
MOV DH,ByteGran+More64k ;32
CALL AssignMem ; Mo
RET

AssignTSS ENDP

ProtLimit EQU $-1 ; Limi

ProtSeg ENDS
| SE

Tletiyi su dile gevir: Turkce

—

high base
le base

ularity
base (usually zero!)

address linear
of segment
pe to allocate

gn to descriptor

tto TSS temporarily

e still a data descriptor)
(fool) assembler

TSS

ting instruction

s to use

k pointer to use
segment to use
k to use

ast TSS)

t worry about 1/10

t point to TSS any more!

te386+AvailTSS ; Now a TSS!

located stack size
xt descriptor
itable memory
-bit access

dify LDT

t of ProtSeg

—
—

1

; User data and code. Note that code is set up for

; TSS.

entry by initial values in

BallData SEGMENT PARA USE16
Top DB ?

Left DB ?

Bottom DB
Right DB
XLoc DB
YLoc DB
DeltaX DB
DeltaY DB
Counts DD
DataLimit EQU $-1
BallData ENDS

ISR

BallCode SEGMENT PARA USE32

ASSUME CS:BallCode,DS:BallData,ES:Noth ing,FS:Nothing,GS:Nothing

BallEntry PROC

MOV AX,OFFSET Screen ; Poin
MOV ES,EAX ; With

MOV AL,[Top] ; Turn

MOV [YLoc],AL ; Into

MOV [Bottom],AL ; And

ADD [Bottom],WindowHeight-1 ; Shif

DEC AL ; Turn
MOV AH,80*2 ; Row
MUL AH

MOVZX EBX,AX ; Into
MOVZX EAX,[Left] ; Get
MOV [XLoc],AL ; Into
MOV [Right],AL ; And

ADD [Right],WindowWidth-1 ; Shif

t to screen

ES

current Top

YLoc

bottom

t bottom down

into memory address
factor

pointer

column

XLoc

right

t right across

DEC EAX ; Turn into memory address

SHL EAX,1

ADD EBX,EAX ; Add into pointer

MOV EDI,EBX : Get into STO pointer

CALL DrawFrame ; And draw the frame

ADD EBX,2*80+2 ; Firs t position in frame

MOV BYTE PTR ES:[EBX],Ball ; Stor e ball into position

MOV [DeltaX],1 ; Head to the right

MOV [DeltaY],1 ; And head down

MOV [Counts],0 ; Coun t to time

STD
Bounce:

MOV ECX,BounceTime ; Wait to bounce
BounceDelay:

LOOP BounceDelay ; (tap foot)

MOV EBP,EBX : Old position
; Calculate new position

MOV AL,[YLoc] ; Get current YLoc

ADD AL,[DeltaY] ; Add in Delta

CMP AL,[Top] ; Too high?

JB SHORT YWrap cYes, SO wrap

CMP AL,[Bottom] ; Too low?

JNA SHORT NoYWrap : No, so don't wrap
YWrap:

NEG [DeltaY] ; Reve rse direction

ADD AL,[DeltaY] ; Undo mistake

ADD AL,[DeltaY] ; Head properly!
NoYWrap:

MOV [YLoc],AL ; Save away

MOV AH,80%*2 ; Row factor

MUL AH ; Turn into memory address

MOVZX EBX,AX

MOVZX EAX,[XLoc]

ADD AL,[DeltaX]

CMP AL,[Left]

JB SHORT XWrap

CMP AL,[Right]

JNA SHORT NoXWrap
XWrap:

NEG [DeltaX]

ADD AL,[DeltaX]

ADD AL,[DeltaX]
NoXWrap:

MOV [XLoc],AL

MOV AH,0

SHL EAX,1

ADD EBX,EAX

MOV BYTE PTR ES:[EBP],"’
MOV WORD PTR ES:[EBX],0F00h+Ball

JMP

BallEntry ENDP

DrawFrame PROC NEAR

XOR
MOV
MOV
STOSW
MOV
MOV
REP
MOV
STOSW
ADD
MOV
JCXZ
Side:
PUSH
MOV
STOSW
MOV
MOV
REP
MOV
STOSW
ADD
POP
LOOP
NoSide:
MOV
STOSW
MOV
MOV
REP
MOV
STOSW
RET

Bounce ; And
ECX,ECX : Zero
AH,0Fh ; Whit
AL'U : TopL

;. Stor
AL,'A' : Top
CL,WindowWidth ; This
STOSW ; Stor
AL,'¢' ; TOpR

; Stor
EDI,2*(80-WindowWidth-2) ; Next
CL,WindowHeight ; Heig
NoSide : None
ECX : Need
AL, ;A si

;. Stor
AL’ ; Blan
CL,WindowWidth ; This
STOSW ; Stor
AL, ; Othe

; Stor
EDI,2*(80-WindowWidth-2) ; Next
ECX ; Rest
Side
ALA' : Bott

; Stor
AL,'A' : Bott
CL,WindowWidth ; This
STOSW ; Stor
AL'U : Bott

; Stor

DrawFrame ENDP

CodeLimit EQU $-1

BallCode ENDS

; Into

; Get
; Add
; Too
cYes,
; Too
; No,

: Reve
; Undo
: Head

: Save
; Turn
; Colu
; Add

: Dele

index register

current XLoc
in Delta

left?

S0 wrap
right?

so don't wrap

rse direction
mistake

properly!

away
into memory address
mn factor

into memory address
te old ball

t new ball

bounce forever!

high part of ECX
e background

eft corner

e on screen

many
e on screen
ight corner
e on screen
row

ht
!

this later

de

e on screen

k

many

e on screen

r side

e on screen
row

ore row count

om left

e on screen
om

many

e on screen
om right

e on screen

1

; This segment is for interrupt code. As well as th
; handlers, there is also code to handle the variou
; code simply displays all of the registers' conten

e hardware interrupt
s faults. Most of the
ts, then bombs back to

; DOS. The timer and keyboard interrupt, however, i
; Note this segment is marked as being USE32. This
; and also because most instructions used will be 3

; | want to be able to display all of each register

intSeg SEGMENT PARA USE32

ASSUME CS:IntSeg,DS:Nothing,ES:Nothing

Dividelnt:
PUSH O ; Pseudo
PUSH O :INTO
JMP Interrupt ; Show r

; Simple code. Entered on single step interrupt, wa
; then returns. Note dingle<tm> in top right corner

; Pressing Enter stops the single-step action

Debugint PROC

PUSH EBX ; Need t
PUSH DS
PUSH ES

MOV BX,OFFSET MSDOSData ; Point

MOV DS,EBX
ASSUME DS:Data ; And te

MOV BX,OFFSET Screen ; Point
MOV ES,EBX

STI
KeyLoop:
INC BYTE PTR ES:[009Eh] ; Dingle
CMP [KeyPress],57 ; Space
JE SHORT EndDebug :Yes, s
CMP [KeyPress],28 ; Enter
JNE KeyLoop : No, so
AND WORD PTR [ESP+14h],NOT 100h ; Yes, s
EndDebug:
MOV [KeyPress],0 ; Key? W
POP ES
POP DS
POP EBX
IRETD ; Return
JMP Debugint : Re-ent

Debugint ENDP

If above not required, use this instead (modify |

i3adDebugInt:

PUSH 0 : Pseudo

PUSH 1 JINT 1

JMP InterTask : Get va
NMIInt:

PUSH 0 : Pseudo

PUSH 2 JINT 2

JMP Interrupt ; Displa
Breaklnt:

PUSH 0 : Pseudo

PUSH 3 ;INT 3

JMP Interrupt ; Displa
Overlint:

PUSH 0 ; Etcete

PUSH 4 : Etcete

JMP Interrupt ; Etcete

Boundint:

s actually used.
was both as an experiment,
2-bit instructions, since

,FS:Nothing,GS:Nothing

-error code
egisters

its for Enter or Space,
indicates 'waiting'.

hese registers

to Data

Il assembler

to screen

<tm> screen location
pressed?

o leave

pressed?

keep waiting

0 stop tracing

hat key?

from task
ry will appear here

DT).

-error code
lues from TSS
-error code

y registers
-error code

y registers

ra

ra
ra

PUSH O
PUSH 5
JMP Interrupt
Oplnt:
PUSH O
PUSH 6
JMP Interrupt
No387Int:
PUSH O
PUSH 7
JMP Interrupt
Doublelnt:
PUSH 31 ; Note n
JMP InterTask : Double
Over387Int:
PUSH O
PUSH 9
JMP Interrupt
BadTSSInt:
PUSH 10 : Note n
JMP InterTask ; Displa
NoSegint PROC
PUSH EBX ; Oops,
PUSH DS ; (Didn'
MOV BX,OFFSET Screen
MOV DS,EBX
INC BYTE PTR DS:[0014h]
MOV BX,OFFSET GDTData
MOV DS,EBX
ASSUME DS:GDT
MOV BX,[ESP+8] : Geter
AND BX,NOT 07h ; Ignore
OR [BX.DescType],Present ; Mark s
POP DS
POP EBX
ADD ESP,4 ; Ignore
IRETD ; And re
NoSegint ENDP
Stackint:
PUSH 12 : Note n
JMP InterTask ; Displa
Genlint:
PUSH 13 ; Note n
JMP Interrupt
Pagelnt:
PUSH 14 : Note n
JMP Interrupt
Int15:
PUSH 0 ; Push p
PUSH 15
JMP Interrupt
Bad387Int:
PUSH O
PUSH 16
JMP Interrupt
Int17:
PUSH O
PUSH 17
JMP Interrupt
Int18:
PUSH O
PUSH 18
JMP Interrupt

Int19:

; Indica

: Point

0 pseudo-error code, as
Faults have a real one

0 pseudo-error code
y registers from TSS

forgot to mark as present!
t really, but good test)

te on screen

to GDT

ror code
extra bits
egment as present

error code
start instruction

0 pseudo-error code
y registers from TSS
0 pseudo-error code

0 pseudo-error code

seudo-error code

PUSH
PUSH
JMP
Int20:
PUSH
PUSH
JMP
Int21:
PUSH
PUSH
JMP
Int22:
PUSH
PUSH
JMP
Int23:
PUSH
PUSH
JMP
Int24:
PUSH
PUSH
JMP
Int25:
PUSH
PUSH
JMP
Int26:
PUSH
PUSH
JMP
Int27:
PUSH
PUSH
JMP
Int28:
PUSH
PUSH
JMP
Int29:
PUSH
PUSH
JMP
Int30:
PUSH
PUSH
JMP
Int31:
PUSH
PUSH
JMP

0
19
Interrupt

0
20
Interrupt

0
21
Interrupt

0
22
Interrupt

0
23
Interrupt

0
24
Interrupt

0
25
Interrupt

0
26
Interrupt

0
27
Interrupt

0
28
Interrupt

0
29
Interrupt

0
30
Interrupt

0
31
Interrupt

Timerint PROC

PUSH
PUSH
PUSH
PUSH
MOV

EAX
EBX
DS
ES
AL,20h

:Need t

; Acknow

hese registers

ledge interrupt in PIC

ouT 20h,AL ; (Note

MOV AX,OFFSET MSDOSData ; Point
MOV DS,EAX

ASSUME DS:Data ; And te
CMP [TaskLock],0 ; Task s
JNE SHORT NoSwitch :Yes, s

MOV AX,OFFSET GDTData ; Point
MOV ES,EAX

ASSUME ES:GDT : And te
STR AX : Get cu
MOVZX EBX,AX ;Intoi
TestTask:
ADD EBX,SIZE Descriptor ; Look a
CMP BX,[LastTask] : Too fa
JBE SHORT NotEndGDT ; Not ye
MOV EBX,OFFSET MainTask ; Yes, s
NotEndGDT:
CMP BX,AX : Back h
JE SHORT NoSwitch ;Yes, s
CMP BYTE PTR ES:[EBX.DescType],Present+Ga
INE TestTask . No, so
MOV [NextTask],BX : New ta
JMP [TaskJump] ; SO jum
NoSwitch:
POP ES
POP DS ; When j
POP EBX
POP EAX
IRETD ; So ret
Timerint ENDP
Keyint PROC
PUSH EAX : Need t
PUSH DS

MOV AX,OFFSET MSDOSData ; Point
MOV DS,EAX

ASSUME DS:Data : And te
MOV AL,20h ; Acknow
ouT 20h,AL ; (Note
IN AL,60h : Get ch
MOV [KeyPress],AL ; Store
CMP [KeyPress],129 Vst
JE IntDOS . Yes, s
POP DS ; No, so
POP EAX
IRETD

Keyint ENDP

Slavelnt:
PUSH O ; Pseudo
PUSH 34 : Note t
JMP SHORT IRQ ; possib

COM2Int:
PUSH O

PUSH 35

interrupts still off)
to Data
Il assembler

witching locked out?
0 do nothing

to GDT alias
Il assembler

rrent task number
ndex pointer

t next descriptor
r?

t

o start again

ere again?

0 none to switch to
te386+AvailTSS ; Is TSS?
keep looking

sk!
p to it (task switching)

umps back, continues here

urn where you left off

hese registers

to data

Il assembler

ledge PIC

interrupts still off)
aracter from keyboard
in global data

Esc released?

o back to DOS!
continue

-error code
his interrupt is not
le - it is the cascade.

JMP SHORT IRQ ; Acknow
COML1llInt:

PUSH O

PUSH 36

JMP SHORT IRQ
IRQ5:

PUSH O

PUSH 37

JMP SHORT IRQ
IRQ6:

PUSH O

PUSH 38

JMP SHORT IRQ
PrintInt:

PUSH O

PUSH 39

JMP SHORT IRQ
IRQ8:

PUSH O

PUSH 40

JMP SHORT IRQB ; Acknow
IRQO9:

PUSH O

PUSH 41

JMP SHORT IRQB
IRQ10:

PUSH O

PUSH 42

JMP SHORT IRQB
IRQ11:

PUSH O

PUSH 43

JMP SHORT IRQB
IRQ12:

PUSH O

PUSH 44

JMP SHORT IRQB
IRQ13:

PUSH O

PUSH 45

JMP SHORT IRQB
IRQ14:

PUSH O

PUSH 46

JMP SHORT IRQB
IRQ15:

PUSH O

PUSH 47
IRQB:

PUSH EAX ; Acknow

MOV AL,20h

ouT OAOh,AL

POP EAX
IRQ:

PUSH EAX ; Acknow

MOV AL,20h

ouT 20h,AL

POP EAX
Interrupt PROC

PUSHAD ; Save a

PUSH DS

PUSH ES

PUSH FS

PUSH GS

PUSH SS

STR AX : Includ

ledge PIC1

ledge PIC2

ledge PIC2

ledge PIC1

Il registers

ing faulting task

PUSH EAX
PUSH CS
POP DS ; Point

MOV AX,OFFSET Screen ; Point
MOV ES,EAX
MOV ESI,OFFSET RegNames ; Point

MOV EDI,[ESP+56] : Interr
; SHL EDI,1 ; Turn
; INC BYTE PTR ES:[EDI] :One o

MOV AX,OFFSET MSDOSData ; Point
MOV FS,EAX
MOV FS:[TaskLock],1 ; Stop t

STI

MOV AH,4Fh ; White-

AND EDI,NOT OFh ; Positi

ADD EDI,160 ; On nex
DumpRegs:

CLD ; Work f

MOV ECX,5 : Five c
NameLoop:

LODSB : Get ch

STOSW ; Store

LOOP NameLoop : For ea

LODSB : Get si

MOV CL,AL ;Into ¢

LODSB ; Get po

MOVzZX EBX,AL ;Into o

LODSB ;Getri

MOV EDX,[ESP+EBX] ; Getva

CALL Hex ; Displa
NoData:

ADD EDI,160 ; Start

AND EDI,NOT OFh ; At tab

CMP ESI,OFFSET EndRegs ; End of

JB DumpRegs ; No, so

CMP BYTE PTR [ESP+56],32 : Was it

JAE SHORT Endint ;Yes, s
IntDOS:

CLI : No, so

DB OEAh ;. JMP FA

DD OFFSET BackToDOS,OFFSET ProtCod
Endint:

ADD ESP,8 ; Ignore
POP GS ; Pop ev
POP FS

POP ES

POP DS

POPAD

ADD ESP,8 ; Ignore
IRETD ; And re

Interrupt ENDP

InterTask PROC
MOV AX,OFFSET MSDOSData ; Point
MOV DS,EAX
ASSUME DS:Data ; And te

MOV [TaskLock],1 ; Stop t

to code, for strings
to screen

to strings

upt number on stack here
into screen address

f these!

to data

ask switching!

on-red!
on to tab-stop
t row

orwards
haracters of text

aracter

attrib+char

ch character

ze of register
ounter

sition on stack

ffset

d of position in TSS
lue from stack

y as hex

new row
-stop

registers?
continue

a hardware int?
0 continue

back to DOS!
R ProtCode:BackToDOS
e

saved TR and SS
erything else

int number and error code
turn

to data

Il assembler

ask switching!

MOV AX,OFFSET Screen : Point
MOV ES,EAX
ASSUME ES:Nothing

MOV AX,OFFSET GDTData ; Point
MOV FS,EAX
ASSUME FS:GDT

STR BX : Get cu

MOV FS:[BX.DescType],Present+Memory
MOV GS,EBX ; Load i
ASSUME GS:TSS ; And te

MOVzZX EBX,GS:[BackLink] : Get Ba

CMP EBX,0

JE SHORT NotLinked

MOV FS:[EBX.DescType],Present+Memor

MOV GS,EBX ; Load i

MOV GS:[BackLink],BX ; Store
NotLinked:

PUSH CSs ; Point

POP DS

MOV ESI,OFFSET RegNames ; Point
MOV EDI,[ESP] ; Positi

SHL EDI,1

AND EDI,NOT OFh
INC BYTE PTR ES:[EDI]
ADD EDI,80*2

Name2Loop:
CLD ; Work f
MOV AH,4Fh ; White-
MOV ECX,5 ; Five ¢
CharLoop:
LODSB ; Get ch
STOSW : Store
LOOP CharLoop ; Once f
LODSB : Get le
MOV CL,AL ;Intoc
LODSB ; lgnore
LODSB ; Get po
MOVZX EBX,AL ; Into |
MOV EDX,GS:[EBX] ; Get va
CMP AL,8 st
JA SHORT HexIt ; No, so
CMP AL,0 st
JE SHORT HexIt ;Yes, s
MOV EDX,[ESP+EBX-4] ; No, so
HexIt:
CALL Hex ; Displa
ADD EDI,160 ;Goto
AND EDI,NOT OFh ; To pre
CMP ESI,OFFSET EndTSSRegs ; End of
JB Name2Loop ; Not ye
JMP IntDOS ;Yes, s

InterTask ENDP

Hex PROC NEAR

STD ; Work b

LEA EDI,[EDI+ECX*2-2] ; Point
HexLoop:

MOV AL,DL ; Get lo

AND AL,OFh : Isolat

ADD AL,'0' ;Turn i

CMP AL,'9' : Too fa

to screen

to GDT

rrent task
; Turn it into memory
nto segment reg

Il (fool) assembler

ckLink TSS

y+Writable ; Make writable
nto segment reg
this TR somewhere

to strings

to strings
on screen pointer

orwards
on-red!
haracters per string

aracter
character+attribute
or each char
ngth of data
ounter

position on stack
sition in TSS
ndex register

lue

int number?

hex it

task number?

o hex it

fish off stack

y it

next row
vious tab-stop
registers?

t

o leave

ackwards
to end of number

west byte
e low nybble

nto ASCII
r?

JBE SHORT LoopHex ; No

ADD AL,A'-'9'-1 :Yes, s
LoopHex:

STOSW : Store

SHR EDX,4 ; Shift

LOOP HexLoop ; Loop

RET ; And re
Hex ENDP
RegNames DB 'Int: ',2,56,4 : Name,w

DB 'EAX: ',8,52,40

DB 'EBX: ',8,40,52

DB 'ECX: ',8,48,44

DB 'EDX: ',8,44,48

DB 'ESI: ',8,28,64

DB 'EDI: ',8,24,68

DB 'ESP: ',8,36,56

DB 'EBP: ',8,32,60

DB 'EIP: ',8,64,32

DB 'Flag:',8,72,36

DB 'CS: ',4,68,76

DB 'DS: ',4,20,84

DB 'ES: ',4,16,72

DB 'FS: ',4,12,88

DB 'GS: ',4,8,92

DB 'SS: ',4,4,80

DB 'Task:",4,0,0

DB 'Err: ',4,60,8
EndRegs EQU $

DB 'LDT: ",4,-1,96

EndTSSRegs EQU $

IntLimit EQU $-1

IntSeg ENDS

END

Entry

o turn into hex

in next nybble

turn

idth,stack pos,TSS pos

